

High Institute of Engineering and Technology

In New Damietta

Chemical Engineering Department

Undergraduate Program Report

Chemical Engineering Department Undergraduate Program Report

A. BASIC INFORMATION

Program Title	Chemical Engineering
Field of the Program	Chemical Engineering
Number of Study Years	Five levels
Number of Credit Hours	180 hours
System of Exam Committee	Semester Evaluation System
System of External Exam Committee	Not applied
Department offering the program	Chemical Engineering
Date of curriculum approval	2007
Date of Program Report Approval	30/8/2017

B. SPECIALIZED INFORMATION

B.1. Statistics

B.1.1. Program Statistics

Element	Nu	mber	Percent
Students <i>Enrolled</i> in the program (4 levels)	1	55	
Students Completing the program			
First semester		6	
Second semester		46	
Summer semester		11	
Students Passed the program			
First semester		5	83.33%
Second semester		37	80.43%
Summer semester		5	45.45%
Students <i>Excellent</i> graded		0	
First semester		0	
Second semester		8	17.4%
Summer semester		0	
Students graded Very Good			
First semester		0	
Second semester		19	41.3%
Summer semester		0	
Students graded Good			
First semester		0	

Second semester	8	17.4%
Summer semester	0	
Students graded Pass		
First semester	5	83.33%
Second semester	2	4.3%
Summer semester	5	45.45%

B.1.2. Years' Statistics

	Numb	Number of Students		
Element	Enrolled	Completed	Passed	
Second level	36	36	24	66.7
Third level	14	14	13	92.85
Fourth level	29	29	26	89.7

B.2. Academic Reference Standards

- Academic standards of reference	NATIONAL ACADEMIC REFERENCE STANDARDS (NARS) FOR ENGINEERING
1- Aims	1. Apply knowledge of mathematics, science and engineering concepts to solve fundamental engineering problems.
	2. Use and manage resources creatively through analyzing data of the designed experiments.
	3. Apply computer systems in chemical engineering by designing a system; component and process to meet the recent technological changes.
	4. Use basic knowledge of chemical process industries, and consider its impact on society, economics and environment.
	5. Demonstrate knowledge of contemporary engineering issues through address the issues of process dynamic and control in plant operation.
	6. Apply research work in chemical reactions, and

	demonstrate its characterestics to evaluate outcomes and draw conclusion for industrial processess.
	7. Work effectively within teams of different disciplines by self and long learning by using safe laboratory practice.
	8. Recognize and display the challenging role in ethical responsibilities of the professional engineering.
2- knowledge and understanding	The graduates of the chemical engineering programs should be able to demonstrate the knowledge and understanding of:
	A1. Define concepts and theories of mathematics and sciences, appropriate to the discipline.
	A2. Define basics of information and communication technology (ICT)
	A3. Listing Characteristics of engineering materials related to the discipline.
	A4. Describe principles of design including elements design, process and/or a system related to specific disciplines.
	A5. Recognize methodologies of solving engineering problems, data collection and interpretation
	A6. Describe quality assurance systems, codes of practice and standards, health and safety requirements and environmental issues.
	A7. List the business and management principles relevant to engineering.
	A8. Define current engineering technologies as related to disciplines.
	A9. Investigate topics related to humanitarian interests and moral issues.
	A10. Define technical language and report writing
	A11. State professional ethics and impacts of engineering solutions on society and environment
	A12. Recognize contemporary engineering topics.
	A13. Define the fundamentals, basic characteristics and features of organic and inorganic reactions, and their application in chemical process industries

	including petroleum refining, natural gas processing, petrochemicals industry, electrochemistry, fertilizers
	and ceramics, etc.
	A14. Describe the characteristics of the different states of matter and interfaces between them.
	A15. Shows the conventional procedures of chemical analysis and characterization of common engineering materials and components.
	A16. Recognize the principles of chemical engineering including chemical reaction equilibrium and thermodynamics; mass and energy balance; transport processes; separation processes, mechanical unit operations and process control.
	A17. Learn the general principles of design techniques specific to particular products and processes including reactor and vessel design.
	A18. Realizes the environmental impact of various industries, waste minimization and treatment of industrial facilities.
3- B. Intellectual skills	
	The graduates of the engineering programs should be able to:
	B1. Select appropriate mathematical and computer- based methods for modeling and analyzing problems.
	B2. Categorise appropriate solutions for engineering problems based on analytical thinking.
	B3. Think in a creative and innovative way in problem solving and design.
	B4. Assess different ideas, views, and knowledge from a range of sources.
	B5. Evaluate the characteristics and performance of components, systems and processes.
	B6. Investigate the failure of components, systems, and processes.
	B7. Solve engineering problems, often on the basis of
	limited and possibly contradicting information.

	engineering problems.
	B9. Judge engineering decisions considering balanced costs, benefits, safety, quality, reliability, and environmental impact.
	B10. Incorporate economic, societal, environmental dimensions and risk management in design.
	B11. Analyze results of numerical models and their limitations.
	B12. Create systematic and methodic approaches when dealing with new and advancing technology.
	B13. Apply analysis technique for processing such as energy and mass balance.
	B14. Summarize the appropriate techniques relevant to different industries.
	B15.Collect data draw simplified equipment flow sheets, charts and curves and interpret data derived from laboratory observation.
	B16. Synthesize new processes or products through utilization and effective management of available resources.
4- Professional skills	The Chemical Engineering graduate must show ability to:
	C1. Apply knowledge of mathematics, science, information technology, design, business context and engineering practice integrally to solve engineering problems.
	C2. Professionally merge the engineering knowledge, understanding, and feedback to improve design, products and/or services.
	C3. Create a process, component or system, and carry out specialized engineering designs.
	C4. Practice the neatness and aesthetics in design and approach.
	C5. Use computational facilities and techniques, measuring instruments, workshops and laboratory equipment to design experiments, collect, analyse and interpret results.
	C6. Use a wide range of analytical tools, techniques, equipment, and software packages pertaining to the

	discipline and develop required computer programs.
	C7. Apply numerical modeling methods to engineering problems.
	C8. Apply safe systems at work by observing the appropriate steps to manage risks.
	C9. Demonstrate basic organizational and project management skills.
	C10. Apply quality assurance procedures and follow codes and standards.
	C11. Exchange knowledge and skills with engineering community and industry.
	C12. Prepare technical reports.
	C13. Perform complete mass and energy balances for chemical engineering plants.
	C14 Apply the principles of chemical equilibrium and process thermodynamics to systems with chemical reactions
	C15 Conduct troubleshooting in chemical engineering plants.
	C16 Use chemical engineering IT tools and programming in design.
	C17 Determine the characteristics and performance of measurement and control systems.
	C18 Employ principles and concepts of transport phenomena in problem solving.
5- General skills	Graduates will have an educated view of the world including:
	D1. Collaborate effectively within multidisciplinary team.
	D2. Work in stressful environment and
	within constraints.
	D3. Communicate effectively.
	D4. Demonstrate efficient IT capabilities.
	D5. Motivate individuals.
	D6. Effectively manage tasks, time, and
	resources.
	D7.Search for information and engage in

life-long self-learning discipline. D8. Acquire entrepreneurial skills.
D9. Refer to relevant literatures.

B.3. Regulatory and Administrative Constraints

Constraint	Intensity		
Constraint	High	Moderate	Low
Shortage of staff members			
Lack of communication with industry	\checkmark		
Lack of coordination between departments			
Lack of administrative coordination			\checkmark
Lack of administrative to departments coordination			
Lack of coordination between management and departments			
Ineffective acceptance rules for the students			
Bad utilization of available facilities			

B.4. Methods Used for Students Evaluation

No.	Evaluation Method	Time	Remarks of External
1	Written Examination	Midterm, Endterm	
2	Semester Work	Reports, Quizes	
3	Final Term Examination	Endterm	

B.5. Educational Facilities, Methods, and Structure

Element	A	Appropriateness		
Element	High	Moderate	Low	
Students/Staff Ratio				
Staff Specialization				
Staff Load				
Library				
Electronic Library				
Labs				
Computers				
Auxiliary Educational Facilities				
Teaching Methods				
Workshops and Conferences				
Internal Training Plans				
External Training Plans				
Program Structure				
Cooperation of Business Organizations				

B.6. Quality and Development Management

Element	Effectiveness		
Element	High	Moderate	Low
Student Support System			
Follow up and Corrective System			
Periodic Review System			
Continuous Improvement System			
Internal Review System			
External Review System			
Implementation of University Regulations and Rules			

B.7. Students' Suggestions

Suggestion		Implemented?	
		No	
Provide training on how to use a new teaching technology in their classes.			
Using online course material.			
Increasing the scientific references.			
Integrating work experiences with education by providing field visits.			

B.8. Program Enhancement Suggestions

Suggested Exhangement	Necessity		
Suggested Enhancement	High	Moderate	Low
Improve lecture notes			
Integrating work experiences with education.	\checkmark		
Transplant And Assess Pedagogy Utilizing Such Technologies To Enhance Students' Learning.			

B.9. Comments from External Evaluators

No.	Comment	
1	References Updating	
2	Clarity of course aims is not achieved	
3	The ability of learning outcomes to be measured is not achieved	
4	Appropriate learning outcomes targeted to the aims of the course is not achieved	

Coordinator: Prof.

Department Head: Prof. Dr