Ministry of Higher Education The Higher Institute of Engineering and Technology in New Damietta Course title: Mechanics-1 Course code: ENG.101 Semester: Summer Midterm **Department: General** Level: 1 Time allowed: 90 Minutes Date: 28/7/2018 Day: Sat. Full Mark: 20 No. of exam pages: 1 Q:1 ----- 5 Marks A barge is pulled by two tugboats. If the resultant of the forces exerted by tugboats is a 5000 N directed along the axis of the barge, **determine:** - A) The tension in each of the ropes knowing that $\alpha = 45^{\circ}$, - B) The value of α for which the tension in rope 2 is minimum. Q:2 5 Marks The five forces shown act at point A. What is the magnitude of the resultant force, and what is its angle to the x-axis. Q:3 ----- 5 Marks A 200 kg cylinder is hung by means of two cables AB and AC, which are attached to the top of a vertical wall. A horizontal force P perpendicular to the wall holds the cylinder in the position shown. Determine the magnitude of P and the tension in each cable. Q:4 5 Marks A square foundation mat supports the four columns shown. Determine the magnitude and point of application of the resultant of the four loads. Best wishes, Dr. Salah Dafea ### Model Answer of Mechanics-1 (ENG.101) ### ANSWER Q:1 5 Marks **a.** Tension for $\alpha = 45^{\circ}$. *Graphical Solution*. The parallelogram law is used; the diagonal (resultant) is known to be equal to 5000 \aleph and to be directed to the right. The sides are drawn parallel to the ropes. If the drawing is done to scale, we measure $$T_1 = 3660 \text{ N}$$ $T_2 = 2590 \text{ N}$ *Trigonometric Solution.* The triangle rule can be used. We note that the triangle shown represents half of the parallelogram shown above. Using the law of sines, we write $$T_1$$ T_2 5000 **N** 30° **b.** Value of α for Minimum T_2 . To determine the value of α for which the tension in rope 2 is minimum, the triangle rule is again used. In the sketch shown, line I-I' is the known direction of T_1 . Several possible directions of T_2 are shown by the lines 2-2'. We note that the minimum value of T_2 occurs when T_1 and T_2 are perpendicular. The minimum value of T_2 is $$T_2 = (5000 \text{ N}) \sin 30^\circ = 2500 \text{ N}$$ Corresponding values of T_1 and α are $$T_1 = (5000 \text{ N} \cdot \cos 30^\circ = 4330 \text{ N}$$ $\alpha = 90^\circ - 30^\circ$ $\alpha = 60^\circ$ ## ANSWER Q:2 The five forces shown act at point A. What is the magnitude of the resultant force? Solution $$\sum F_{\pi} = 30 \text{ N} + (45 \text{ N}) \cos 30^{\circ} + (60 \text{ N}) \cos 60^{\circ}$$ $$+ (75 \text{ N}) \cos 90^{\circ} + (90 \text{ N}) \cos 120^{\circ}$$ $$= 54 \text{ N}$$ $$\sum F_y = (30 \text{ N}) \sin 0^\circ + (45 \text{ N}) \sin 30^\circ$$ $$+ (60 \text{ N}) \sin 60^\circ + 75 \text{ N}$$ $$+ (90 \text{ N}) \sin 120^\circ$$ $$= 227.4 \text{ N}$$ $$R = \sqrt{(54 \text{ N})^2 + (227.4 \text{ N})^2}$$ $$= 233.7 \text{ N} \quad (234 \text{ N})$$ $$\cos \Theta = \frac{54}{235.7}$$ $$\cos \Theta = \frac{54}{235.7}$$ 4. **Free-body Diagram.** Point A is chosen as a free body; this point is subjected to four forces, three of which are of unknown magnitude. Introducing the unit vectors i, j, k, we resolve each force into-rectangular components. $$\mathbf{P} = P\mathbf{i}$$ $$\mathbf{W} = -mg\mathbf{j} = -(200 \text{ kg})(9.81 \text{ m/s}^2)\mathbf{j} = -(1962 \text{ N})\mathbf{j}$$ (1) In the case of T_{AB} and T_{AC} , it is necessary first to determine the components and magnitudes of the vectors \overrightarrow{AB} and \overrightarrow{AC} . Denoting by λ_{AB} the unit vector along AB, we write $$\overline{AB} = -(1.2 \text{ m})\mathbf{i} + (10 \text{ m})\mathbf{j} + (8 \text{ m})\mathbf{k} \qquad AB = 12.862 \text{ m}$$ $$\lambda_{AB} = \frac{\overline{AB}}{12.862 \text{ m}} = -0.09330\mathbf{i} + 0.7775\mathbf{j} + 0.6220\mathbf{k}$$ $$\mathbf{T}_{AB} = T_{AB}\lambda_{AB} = -0.09330T_{AB}\mathbf{i} + 0.7775T_{AB}\mathbf{j} + 0.6220T_{AB}\mathbf{k} \qquad (2)$$ $$AC = -(1.2 \text{ m})\mathbf{i} + (10 \text{ m})\mathbf{j} - (10 \text{ m})\mathbf{k} \qquad AC = 14.193 \text{ m}$$ $$\lambda_{AC} = \frac{\overline{AC}}{14.193 \text{ m}} = -0.08455\mathbf{i} + 0.7046\mathbf{j} - 0.7046\mathbf{k}$$ $$\mathbf{T}_{AC} = T_{AC}\lambda_{AC} = -0.08455T_{AC}\mathbf{i} + 0.7046T_{AC}\mathbf{j} - 0.7046T_{AC}\mathbf{k} \qquad (3)$$ Equilibrium Condition. Since A is in equilibrium, we must have $\mathbf{T}_{AB} + \mathbf{T}_{AC} + \mathbf{P} + \mathbf{W} = 0$ or, substituting from (1), (2), (3) for the forces and factoring i, j, k, $$\begin{array}{l} (-0.09330T_{AB} - 0.08455T_{AC} + P)\mathbf{i} \\ + (0.7775T_{AB} + 0.7046T_{AC} - 1962 \text{ N})\mathbf{j} \\ + (0.6220T_{AB} - 0.7046T_{AC})\mathbf{k} = 0 \end{array}$$ $$\begin{array}{lll} (\Sigma F_x = 0:) & -0.09330 T_{AB} - 0.08455 T_{AC} + P = 0 \\ (\Sigma F_y = 0:) & +0.7775 T_{AB} + 0.7046 T_{AC} - 1962 \ \mathrm{N} = 0 \\ (\Sigma F_z = 0:) & +0.6220 T_{AB} - 0.7046 T_{AC} = 0 \end{array}$$ Solving these equations, we obtain $$P = 235 \text{ N}$$ $T_{AB} = 1402 \text{ N}$ $T_{AC} = 1238 \text{ N}$ # SOL Q:4 $$R = \Sigma F$$ $$M_{\lambda} = \sum (r_{\lambda} F)$$ Dealing with R = $$(z(\hat{i} + z\hat{k}) \times (-80\hat{j}) = 240\hat{i} - 280\hat{k}$$ from which = -802 = -280