

Mathematics (1) (MTH101)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Mathematics (1)
Course Code	MTH101
Year/Level	Level 1
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Tarabina bassa	Lectures	Tutorial	Practical	
Teaching hours	2	2	-	

2. Course Aims

No.	Aims
1	Master a broad range of Mathematics engineering knowledge and specialized skills of Algebra and Calculus, as well as the ability to apply acquired knowledge of Algebra and Calculus in real-world situations by applying theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve mathematical engineering problems of varying systems models.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve	a1 Explain the relevant mathematical engineering principles
complex engineering problems	and theories in Algebra and Calculus.
by applying engineering	a3 Explain the basic concepts of derivative and algebra.
fundamentals, basic science, and	b1 Use the mathematical engineering principles and theories
mathematics.	that apply in the most fundamental problems.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Vectors - Vectors Algebra- partial fractions	4	4	-
2	The Concept of functions	2	2	-
3	Equations theory –Mathematical Deduction	4	4	-
4	Basic Trigonometric functions and its inverse	4	4	-

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Exponential and Logarithmic functions Hyperbolic functions and its inverse Connection (definition – theories) Maclaurin expansion The Taylor series			
5	Numerical solutions methods	4	4	-
6	Limits, derivatives, and curves drawing	4	4	-
7	Introduction of Partial Derivatives	4	4	-
8	Linear equations systems – Gauss Jordan method for deletion.	2	2	-
	Total	28	28	-

5. Teaching and learning methods:

Topics	Face-to-Face Lecture	OnlineLecture	FippedClassroom	P r e s e n t a ti o n a n d m o vi e s	D is c u s si o n	Problem solvings	B r ai n st o r m i n g	P r o j e c ts	Si t e vi si ts	Self-le arn in gand Research	Cooperative	Discovering	Model in a	la b
Vectors - Vectors Algebra- partial fractions	х	х			х	х	х							
The Concept of functions	х	х			х	х	х							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Equations theory										
–Mathematical	Х	Х		Х	Х	Х				
Deduction										
Basic Trigonometric										
functions and its										
inverse										
Exponential and										
Logarithmic functions										
Hyperbolic functions	Х	Х		Х	х	Х				
and its inverse										
Connection (definition										
– theories)										
Maclaurin expansion										
The Taylor series										
Numerical solutions						,				
methods	Х	Х		Х	Х	Х				
Limits, derivatives, and						,				
curves drawing	Х	Х		Х	Х	Х				
Introduction of Partial										
Derivatives	Х	Х		Х	Х	Х				
Linear equations										
systems – Gauss Jordan	х	х		х	х	х				
method for deletion.										

6. Teaching and learning methods for disabled students:

		•				
No.	Teaching Methods	Reason				
1	Presentation of the course in digital material	Better access any time				
2	Wed communication with students	Better communication with certain cases				
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students				

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1	a1, b1
2	Semester work (quizzes, sheets, report)	C1	b1
3	Final term examination	C1	a1, a3, b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Semester work	7 th - 9 th
3	Final term examination	15 th

7.3 weighting of Evaluation:

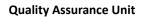
No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	Richard W. Fisher "No-Nonsense Algebra, 2nd Edition" Math Essentials; 2nd edition (2018).
2	Sherman K. Stein " Calculus in the First Three Dimensions" Dover Publications; Second Edition, (2018).

9. Facilities required for teaching and learning:

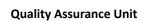
	Facility							
1	Lecture classroom	3	White board					
2	Seminar	4	Data Show system					


10. Matrix of Competencies and LO's:

No	Topic	Aims	Competencies	LO's			
1	Vectors - Vectors Algebra- partial fractions	1	C1	a1, b1			
2	The Concept of functions	1	C1	a1, b1			
3	Equations theory –Mathematical Deduction	1	C1	a1, b1			
4	Basic Trigonometric functions and its inverse Exponential and Logarithmic functions Hyperbolic functions and its inverse Connection (definition – theories) Maclaurin expansion The Taylor series	1	C1	a1, b1			
5	Numerical solutions methods	1	C1	a1, b1			
6	Limits, derivatives and curves drawing	1	C1	a3, b1			
7	Introduction of Partial Derivatives	1	C1	a3, b1			
8	Linear equations systems – Gauss Jordan method for deletion.	1	C1	a1, b1			

Course Coordinator: Dr. Reda Abdo

Head of Department: Assoc. Prof. Dr. Amal Bahiry



Date of Approval: 2022

Mechanics (1) (ENG101)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Mechanics (1)
Course Code	ENG101
Year/Level	Level 1
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Tooching house	Lectures	Tutorial	Practical		
Teaching hours	2	2	-		

2. Course Aims:

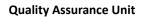
No.	Aims
1	Master a broad range of statics knowledge to apply it on force system, distributed forces,
	and moment of inertia.
	Use the techniques, skills, and current engineering tools required for engineering practice
2	of Statics applications by taking full responsibility for one's own learning and development,
3	participating in lifelong learning and consider the impact of statics study in real world, and
	its strong relation with environment and almost of all the technology fields upgrades.

3. Competencies:

Competencies	Learning Outcomes (LO'S)								
C1 Identify, formulate, and solve complex engineering problems	 a1 Define concepts and theories of space vectors, momentums, equivalent couples, and equation of equilibrium for rigid body. a2 Recognize methodologies of solving equilibrium under the 								

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Introduction to statics.	2	r	
+	Fundamental concept		2	-


	Basic quantities of unit dimension- System of units Space, Trigonometry and U.S. Customary units, Force. Statics of particles, Statics of Rigid Body, Free body diagrams. Types of forces, Types of system of forces			
2	Statics of particles Forces on a particle, Addition of vectors, Resultant of several concurrent forces.	2	2	-
3	Resolution of a forces into components Rectangular components of a forces, (unit vectors). Addition of forces by summing X and Y components. Equilibrium of a particle, and Newton's first law of motion.	2	2	-
4	Problem involving the equilibrium of a practice- free body diagram. Rectangular components of a force in space, force defined by its magnitude and two points on its line of action. Addition of concurrent forces in space, equilibrium of a particle in space.	2	2	-
5	Rigid bodies: equivalent systems of forces. External and internal forces, principle of transmissibility and equivalent forces, vector product of two vectors, vector product expressed in terms of rectangular components	2	2	-
6	Moment of a force about a point. Varignon's theorem, rectangular components of the moment of a force, equivalent systems of forces.	4	4	-
7	Equilibrium of rigid bodies Free- body diagram. Equilibrium of a rigid body in two dimensions.	2	2	-
8	Equilibrium of three- dimension force body. Reduction of a system of forces to one force and one couple. Equilibrium of a rigid body in three dimensions. Reactions at supports and connections for a two-dimensional and for a three- dimensional structure.	4	4	-
9	Centroids and centers of gravity. Centre of gravity of a two- dimensional body, centroids of area and lines, first moments of areas and lines, composite plates and wires.	4	4	-

10	Analysis of structures Definition of truss Simple trusses Analysis of trusses by the method of joints	4	4	-
	Total	28	28	-

. Teaching and learning methods:														
Topics	Face-to-FaceLecture	OnlineLecture	F - ppedClassroom	Present ation and movies	D is c u s is o n	Problemsolv: ng	B rainstorm in g	P r o j e c ts	Si t e vi si ts	Self-le arning and Research	Cooperative	Discovering	Model: n∞	la b
Introduction to statics. Fundamental concept Basic quantities of unit dimension- System of units Space, Trigonometry and U.S. Customary units, Force. Statics of particles, Statics of Rigid Body, Free body diagrams. Types of forces, Types of system of forces	x	x			x									
Statics of particles Forces on a particle, Addition of vectors, Resultant of several concurrent forces.	х	х				х								
Resolution of a forces into components	х	х					х							

Rectangular components of a forces, (unit vectors). Addition of forces by summing X and Y components.									
Equilibrium of a particle, and Newton's first law of motion.									
Problem involving the equilibrium of a practice- free body diagram. Rectangular components of a force in space, force defined by its magnitude and two points on its line of action. Addition of concurrent forces in space, equilibrium of a particle in space.	x	x		x					
Rigid bodies: equivalent systems of forces. External and internal forces, principle of transmissibility and equivalent forces, vector product of two vectors, vector product expressed in terms of rectangular components	x	x		x	x				
Moment of a force about a point. Varignon's theorem, rectangular components of the moment of a force, equivalent systems of forces.	х	x		x					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Equilibrium of rigid bodies Free- body diagram. Equilibrium of a rigid body in two dimensions.	х	х		х					
Equilibrium of three-dimension force body. Reduction of a system of forces to one force and one couple. Equilibrium of a rigid body in three dimensions. Reactions at supports and connections for a two-dimensional and for a three-dimensional structure.	x	x			x				
Centroids and centers of gravity. Centre of gravity of a two- dimensional body, centroids of area and lines, first moments of areas and lines, composite plates and wires.	х	х		х	х				
Analysis of structures Definition of truss Simple trusses Analysis of trusses by the method of join	x	х		x					

6. Teaching and learning methods for disabled students:

	- 1' saul l	_		
No.	Teaching Methods	Reason		
1	Presentation of the course in digital material	Better access any time		
2	Web communication with students	Better communication with certain cases		
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students		

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1	a1, b1
2	Semester work (quizzes, sheets, report)	C1	a1, b1
3	Final term examination	C1	a1, a2, b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	2 nd -7 th - 9 th -14 th
3	Final term examination	15 th

7.3 weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	M. Abdullah Al Faruque, Bahar Zoghi, Sylvester A. Kalevela "Engineering statics" 1st edition,
_	CRC Press (2019).
2	Bogachev, V., Smolyanov, Oleg G. "Topological Vector Spaces and Their Applications"
	Springer International Publishing (2017).

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

10. Matrix of Competencies and LO's:

No.	Topic	Aims	Competencies	LO's
1	Introduction to statics. Fundamental concept Basic quantities of unit dimension- System of units Space, Trigonometry and U.S. Customary units, Force. Statics of particles, Statics of Rigid Body, Free body diagrams. Types of forces, Types of system of forces	1	C1	a1
2	Statics of particles Forces on a particle, Addition of vectors, Resultant of several concurrent forces.	1	C1	a1
3	Resolution of a forces into components Rectangular components of a forces, (unit vectors). Addition of forces by summing X and Y components. Equilibrium of a particle, and Newton's first law of motion.	3	C1	a2
4	Problem involving the equilibrium of a practice- free body diagram. Rectangular components of a force in space, force defined by its magnitude and two points on its line of action. Addition of concurrent forces in space, equilibrium of a particle in space.	3	C1	a2
5	Rigid bodies: equivalent systems of forces. External and internal forces, principle of transmissibility and equivalent forces, vector product of two vectors, vector product expressed in terms of rectangular components	1	C1	a1
6	Moment of a force about a point. Varignon's theorem, rectangular components of the moment of a force, equivalent systems of forces.	1	C1	a1
7	Equilibrium of rigid bodies Free- body diagram. Equilibrium of a rigid body in two dimensions.	3	C1	a2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

8	Equilibrium of three- dimension force body. Reduction of a system of forces to one force and one couple. Equilibrium of a rigid body in three dimensions. Reactions at supports and connections for a two-dimensional and for a three- dimensional structure.	3	C1	a1, a2
9	Centroids and centers of gravity. Centre of gravity of a two- dimensional body, centroids of area and lines, first moments of areas and lines, composite plates and wires.	1	C1	b1
10	Analysis of structures Definition of truss Simple trusses Analysis of trusses by the method of joints	3	C1	b1

Course Coordinator: Dr. Moataz Mostafa

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Physics (1) (PHY101)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Physics (1)
Course Code	PHY101
Year/Level	Level 1
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Teaching hours	Lectures	Tutorial	Practical		
	2	2	2		

2. Course Aims:

No.	Aims
1	Mastery of a broad range of engineering physics knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying theories in critical and systemic analytical thinking to identify, diagnose, and solve engineering problems of varying complexity and variance.
4	Use the experimental techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.

3. Competencies:

Competencies	Learning Outcomes (LO'S)						
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a1 Explain concepts and theories of mathematics for physical quantities, unit's dimensional analysis and basics of thermodynamics. a2 Recognize methodologies of solving problems for stress-strain diagram, and fluids study. b1 Select the appropriate solutions for properties of materials through Brittle and Ductile material. 						

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	a2 Describe quality assurance systems, codes of practice and standards, health and safety requirements, and environmental issues.
C6 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	c1 Conduct troubleshooting in chemical engineering plants.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Physics and Measurement Practical: measurement methods	4	4	2
2	Mechanical properties for materials Practical: Hooks' Law	4	4	2
3	Oscillations Practical: simple pendulum.	4	4	2
4	Sounds. Practical: Resonance in the Air columns.	2	2	4
5	Fluids. Practical: Viscosity.	4	4	4
6	Heat transfer Practical: Heat& Specific Heat& thermo-electrical equivalent& the latent heat of melting ice.	2	2	6
7	The kinetic theory of gases and the work in thermodynamics Practical: melting point of solid materials.	2	2	4
8	The laws of thermodynamic Practical: heating and cooling curves.	4	4	2
9	Temperature and thermal expansion Practical: coefficient of linear thermal expansion.	2	2	2
	Total	28	28	28

5. Teaching and learning methods:

No	Topics	Face-to-Face Lecture	OnlineLecture	FlippedClassroom	P resentation and movies	D is c u s si o n	Problems olv: ng	B rainstorm ing	P r o j e c ts	Si t e vi si ts	Self-le arning and Research	C o o p e r a ti v e	Discoverings	M o d el i n g	L a b
1	Physics and Measurement Practical: measurement methods	x	х				x								x
2	Mechanical properties for materials Practical: Hooks' Law	x	х			х									x
3	Oscillations Practical: simple pendulum.	x	х					х							х
4	Sounds. Practical: Resonance in the Air columns.	х	х				х								x
5	Fluids. Practical: Viscosity.	х	х					х							х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	<u> </u>										
6	Heat transfer Practical: Heat& Specific Heat& thermo-electrical equivalent& the latent heat of melting ice.	X	x		x						x
7	The kinetic theory of gases and the work in thermodynamics Practical: melting point of solid materials.	х	x								x
8	The laws of thermodynamic Practical: heating and cooling curves.	х	х			х					х
9	Temperature and thermal expansion Practical: coefficient of linear thermal expansion.	х	х				х				x

6. Teaching and learning methods for disabled students:

<u> </u>	terning and rearring methods for disabled stadent	<u></u>					
No.	Teaching Methods	Reason					
1	Presentation of the course in digital material	Better access any time					
2	Web communication with students	Better communication with certain cases					
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different levels of students					

7. Student evaluation:

7.1 Student evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1, C2, C6	a1, a2, c1
2	Semester work (quizzes, sheets, report)	C1, C2, C6	a1
3	Practical exam	C1	a1, a2
4	Final term examination	C1, C6	a2, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
-----	-------------------	-------

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Midterm examination	8 th
2	Semester work	7 th ,9 th
3	Practical examination	14 th
4	Final term examination	15 th

7.3 weighting of Evaluation:

	5-8	
No.	Evaluation method	Weights
1	Mid-term examination	10%
2	final examination	60%
3	Practical examination	10%
4	Semester work	20%
	Total	100%

8. List of References:

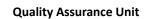
No.	Reference List
1	Peter J. Williams; Firas Mansour; Robert L. Hawkes; (Nuclear physicist) Javed Iqbal; Marina Milner-Bolotin. Physics for scientists and engineers: an interactive approach, Nelson
	Education Ltd., Year: 2019
,	David Halliday, Robert Resnick, Jearl Walker. Fundamentals of Physics, 9th Edition, Binder
	Ready Version,2019
	Serway, Raymond A., and John W. Jewett. Physics for scientists and engineers. Cengage
3	learning, 2018.
4	Hibbeler, Russell C. "Mechanics of materials." (2018).

9. Facilities required for teaching and learning:

	indes required for teaching and rearring.
No.	Facility
1	Lecture classroom
2	Laboratory
3	Presenter
4	White board
5	Data show system

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

10. Matrix of Competencies and LO's:


No.	Торіс	Aims	Competencies	LO's
1	Physics and Measurement Practical: measurement methods	1, 4	C1, C2, C6	a1, a2, c1
2	Mechanical properties for materials Practical: Hooks' Law	1, 4	C1, C2, C6	a1, a2, c1
3	Oscillations Practical: simple pendulum.	1, 4	C1, C2, C6	a1, a2, c1
4	Sounds. Practical: Resonance in the Air columns.	1, 4	C1, C2, C6	a1, a2, c1
5	Fluids. Practical: Viscosity.	1, 4	C1, C2, C6	a1, a2, c1
6	Heat transfer Practical: Heat& Specific Heat& thermo-electrical equivalent& the latent heat of melting ice.	1, 4	C1, C2, C6	a1, a2, c1
7	The kinetic theory of gases and the work in thermodynamics Practical: melting point of solid materials.	1, 4	C1, C2, C6	a1, a2, c1
8	The laws of thermodynamic Practical: heating and cooling curves.	1, 4	C1, C2, C6	a1, a2, c1
9	Temperature and thermal expansion Practical: coefficient of linear thermal expansion.	1, 4	C1, C2, C6	a1, a2, c1

Course Coordinator: Assoc. Prof. Dr. Amal Bahiry & Dr. Ahmed Lotfy

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

General Chemistry (CHE101)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	General Chemistry
Course Code	CHE101
Year/Level	Level 1
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Tanahing haves	Lectures	Tutorial	Practical		
Teaching hours	2	-	2		

2. Course Aims:

No.	Aims											
1	Master a wide spectrum of engineering knowledge and specialized skills for applying											
	acquired knowledge using theories and abstract thinking in real life situations.											
	Consider the impact of chemical process industries on society, economics, and the											
8	environment using fundamental knowledge of chemical process industries.											

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals and basic science.	 a1 Describe the relevant Chemical principles and theories in the discipline. c2 Identify the chemical engineering principles and theories that apply to the topic. c3 Solve chemical engineering problems by applying chemical engineering fundamentals.
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	a2 Describe quality assurance systems, codes of practice and standards, health and safety requirements, and environmental issues.
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global,	d1 Collaborate effectively within multidisciplinary team.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	d2 Work in stressful environment and within constraints.
C6 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	c1 Conduct troubleshooting in chemical engineering plants.
C10 Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.	d2 Acquire chemical engineering principles for professionally merge, understanding, and feedback to improve design, products for many chemical engineering industries.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Gaseous status. Practical: Chemistry Laboratory Equipment, Titrimetric Analysis.	4	-	4
2	Chemical thermodynamics. Practical: Preparation of standard solution of Na ₂ CO ₃ (0.1N), Determination of normality of HCL by using standard solution of oxalic acid.	4	-	4
3	Properties of solutions. Practical: Determination of normality of acetic acid by using standard solution of sodium hydroxide, Determination of normality of sodium carbonate by using standard solution of HCL.	4	-	4
4	Material balance in combustion processes. Practical: Standardization of potassium permanganate with oxalic acid.	2	-	2
5	Dynamic balance in physical and chemical operations. Practical: Determination of nitrites, precipitation titrations.	4	-	4
6	Kinetic chemical interactions. Practical: Preparation of 0.05N of sodium chloride.	2	-	2
7	Electrochemistry, corrosion, and corrosion control. Practical: Determination of chloride ion by using Mohr method.	2	-	2
8	Fertilizers.	2	-	2

	Practical: Determining Molecule Weight by Freezing Point Depression Method.			
9	Manufacturing and chemistry of Cement. Practical: Determining Molecule Weight by Freezing Point Depression Method.	2	-	2
10	Water processes. Practical: determination of water hardness by complex metric titration.	2	-	2
	Total	28	-	28

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

5. Teaching and learning methods:

No	Topics	Face-to-Face Lecture	OnlineLecture	FlippedClassroom	Present ation and movies	D is c u s si o n	Problems olv: ng	B rain storm in g	P o j e c ts	Si t e vi si ts	Self-le arning and Research	Cooperative	D is c o v e ri n g	Model: ng	L a b
1	Gaseous status. Practical: Chemistry Laboratory Equipment, Titrimetric Analysis.	х	х			х									х
2	Chemical thermodynamics. Practical: Preparation of standard solution of Na ₂ CO ₃ (0.1N), Determination of normality of HCL by using standard solution of oxalic acid.	x	x				x								x
3	Properties of solutions. Practical: Determination of	х	х					х							х

	normality of acetic									
	acid by using									
	standard solution									
	of sodium									
	hydroxide,									
	Determination of									
	normality of									
	sodium carbonate									
	by using standard									
	solution of HCL.									
	Material balance in									
	combustion									
	processes									
4	Practical:	х	x			Х				х
	Standardization of									
	potassium									
	permanganate with oxalic acid.									
	Dynamic balance in									
	physical and									
	chemical									
	operations.									
5	Practical:	х	х		Х					х
	Determination of									
	nitrites,									
	precipitation									
	titrations.									
	Kinetic chemical									
	interactions.									
6	Practical:	х	x		х					х
	Preparation of									-
	0.05N of sodium									
	chloride.									
	Electrochemistry, corrosion, and									
	corrosion control.									
	Practical:									
7	Determination of	X	х			Х				Х
	chloride ion by									
	using Mohr									
	method.									
8	Fertilizers.	Х	х			Х				Х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Practical: Determining Molecule Weight by Freezing Point Depression									
	Method.									
9	Manufacturing and chemistry of Cement. Practical: Determining Molecule Weight by Freezing Point Depression Method.	х	х		х					x
10	Water processes. Practical: determination of water hardness by complex metric titration.	x	х		X					x

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason	
1	Presentation of the course in digital material	Better access any time	
2	Web communication with students	Better communication with certain cases	
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students	

7. Student Evaluation:

7.1 Student Evaluation Method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1, C3, C2, C6	a1, c3, a2, c1
2	Semester work (quizzes, sheets, report)	C1, C3, C2, C6	c2, c3, d2, a2, c1
3	Practical Examination	C1, C10, C3, C2, C6	c2, c3, d2, a2, c1
4	Final term examination	C1, C10	a1, c2, c3, a2, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Semester work	2 nd -7 th - 9 th
3	Practical Examination	14 th
4	Final term examination	15 th

7.3 weighting of Evaluation:

No.	Evaluation Method	Weights	
1	Midterm examination	10%	
2	Semester work	20%	
3	Practical Examination	10%	
4	Final term examination	60%	
	Total	100%	

8. List of References:

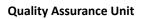
No.	Reference List	
1	Theodore L. Brown, et al, Chemistry the Central Science, Prentice Hall Int. (Pearson	
	International 14 edition), 2017.	
2	Peter Atkins, Julio de Paula, James Keeler " Atkins' Physical Chemistry 11ed" Oxford University Press; 11th edition (2018)	

9. Facilities required for teaching and learning:

No.	Facility	No.	Facility
1	Lecture classroom	4	Data show system
2	Presenter	5	Sound system
3	White board	6	Laboratory

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

10. Matrix of Competencies and LO's:


No.	atrix of Competencies and LO's: Topic	Aims	Competencies	LO's
140.	Gaseous status.	Aiiii3	Competencies	LO 3
1	Practical: Chemistry Laboratory Equipment, Titrimetric Analysis.	1	C1, C3, C2, C6	a1, a2, c1
2	Chemical thermodynamics. Practical: Preparation of standard solution of Na ₂ CO ₃ (0.1N), Determination of normality of HCL by using standard solution of oxalic acid.	1	C1, C3, C2, C6, C3, C2, C6	a1, a2, c1
3	Properties of solutions. Practical: Determination of normality of acetic acid by using standard solution of sodium hydroxide, Determination of normality of sodium carbonate by using standard solution of HCL.	1	C1, C3, C2, C6	a1, a2, c1
4	Material balance in combustion processes. Practical: Standardization of potassium permanganate with oxalic acid.	1	C1, C3, C2, C6	a1, c3, a2, c1
5	Dynamic balance in physical and chemical operations. Practical: Determination of nitrites, precipitation titrations.	1	C1, C3, C2, C6	a1, c3, a2, c1
6	Kinetic chemical interactions. Practical: Preparation of 0.05N of sodium chloride.	1	C1, C3, C2, C6	a2, c1, a1
7	Electrochemistry, corrosion, and corrosion control. Practical: Determination of chloride ion by using Mohr method.	1, 8	C3, C2, C6, C10	a2, c1, a1, c2, c3, d2
8	Fertilizers. Practical: Determining Molecule Weight by Freezing Point Depression Method.	8	C3, C2, C6, C10	a2, c1, c2, d2
9	Manufacturing and chemistry of Cement. Practical: Determining Molecule Weight by Freezing Point Depression Method.	8	C3, C2, C6, C10	a2, c1, c2, d2
10	Water processes. Practical: determination of water hardness by complex metric titration.	8	C10	c2, d2

Course Coordinator: Prof. Dr. Khaled Samir & Dr. Sohir Abo Baker

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Engineering Drawing and Projection (ENG103)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Engineering Drawing and Projection
Course Code	ENG103
Year/Level	Level 1
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	1	-	4

2. Course Aims:

No.	Aims
1	Master a broad range of engineering drawing knowledge and specialized skills, as well as
	the ability to apply acquired knowledge in real-world situations.
	Work in and manage a diverse team of professionals from various engineering disciplines,
2	taking responsibility for own and team performance; and behave professionally and adhere
	to engineering ethics and standards.
	Use the techniques, skills, and current engineering tools required for engineering practice
4	by taking full responsibility for one's own learning and development, participating in lifelong
	learning, and demonstrating the ability to pursue postgraduate and research studies.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a1 Explain the basic principles of engineering drawing. a2 Explain the scientific principles and theories that apply to the topic. b1 Using scientific concepts and tools that are relevant to the profession. b2 Applying engineering drawing basics that are relevant to the subject.

4. Course Contents:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Topics	Lectures	Tutorial	Practical
1	Techniques and skills of engineering drawing	1	-	4
2	Engineering operations	1	-	4
3	Orthogonal projection – Secondary orthogonal	2	-	8
4	Intersections	1	-	4
5	projections of simple bodies	1	-	4
6	rules of writing dimensions	1	-	4
7	Deduction of missing projections	1	-	4
8	Drawing of engineering sections.	1	-	4
9	Steel frames	2	-	8
10	Introduction to AutoCAD Fundamentals of engineering drafting by way of computer aided drawing (CAD) software. Basic features and capabilities of CAD software and drafting fundamentals including orthographic projection, and isometric pictorials, part dimensioning in 2 dimensional drawings.	3	-	12
	Total	14		56

5. Teaching and learning methods:

No	Topics	Fa ce- to- Fa ce Le ct ur e	On lin e Le ct ur e	Fli pp ed Cl as sr oo m	Pr es en tat io n an d m ov ies	Di sc us sio n	Pr ob le m sol vi ng	Br ai n st or mi ng	Pr oj ec ts	Sit e vis its	Sel f-l ea rni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	la b
1	Techniques and skills of engineering drawing	х	x												
2	Engineering operations					х									
3	Orthogonal projection – Secondary orthogonal	х				х									
4	Intersections	х	х			х									

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

5	Projections of simple bodies	х			х					
6	Rules of writing dimensions	х	х		х					
7	Deduction of missing projections	х	х		х					
8	Drawing of engineering sections.	х			x					
9	Steel frames	х	Х		X					
10	Introduction to AutoCAD Fundamentals of engineering drafting by way of computer aided drawing (CAD) software. Basic features and capabilities of CAD software and drafting fundamentals including orthographic projection, and isometric pictorials, part dimensioning in 2 dimensional drawings.	x								x

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
_	Asking small groups to do assignments each composed	Knowledge and skills transfer
2	of low, medium, and high-performance students.	among different level of students.

7. Student Evaluation:

7.1 Student Evaluation method:

<i>.</i>							
No.	Evaluation Method	Competencies	LO's				
1	Midterm exam	C1	a1, a2, b1				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Semester work (quizzes, sheets, report)	C1	a1, a2
3	Final exam	C1	b1, b2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester work	2 nd -7 th - 9 th
2	Mid Term exam	8 th
3	Practical examination	14 th
4	Final term exam	15 th

7.3 weighting of Evaluation:

No.	Evaluation Method	Weights
NO.	Lvaluation iviethou	vveigiits
1	Mid-term examination	10%
2	Practical examination	10%
3	Semester work	20%
4	Final-term examination	60%
	Total	100%

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

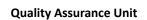
8. List of References:

No.	Reference List
1	K. V. NATARAJAN "ENGINEERING GRAPHICS Paperback" DHANALAKSHMI PUBLISHERS (2018)
2	Lakhwinder Pal Singh, Harwinder Singh "Engineering Drawing: Principles and Applications"
	Cambridge University Press; First edition (2019)

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Computer lab
3	Seminar
4	White board
5	Data Show system

10. Matrix of Competencies and LO's:


No.	Торіс	Aims	Competencies	LO's
1	Techniques and skills of engineering drawing	1	C1	a1
2	Engineering operations	1, 4	C1	a2
3	Orthogonal projection – Secondary orthogonal	1, 4	C1	a1
4	Intersections	1	C1	a1
5	Projections of simple bodies	1	C1	a2
6	Rules of writing dimensions	1, 2	C1	b1
7	Deduction of missing projections	1	C1	b1
8	Drawing of engineering sections.	1	C1	b2
9	Steel frames	1	C1	b2
10	Introduction to AutoCAD Fundamentals of engineering drafting by way of computer aided drawing (CAD) software. Basic features and capabilities of CAD software and drafting fundamentals including orthographic projection, and isometric pictorials, part dimensioning in 2 dimensional drawings.	1, 4	C1	b1, b2

Course Coordinator: Dr. Moataz Mostafa

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

<u>Introductions to Computer Systems</u> (ENG104)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and EngineeringDepartment
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Introductions to Computer Systems
Course Code	ENG104
Year/Level	Level 1
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

To a shine a la source	Lectures	Tutorial	Practical		
Teaching hours	1	-	2		

2. Course Aims:

No.	Aims
1	Master a wide range of engineering knowledge and specialized skills, as well as the ability to
1	apply that information in real-world situations using theories and analytical thinking.
7	Use techniques, skills and modern engineering tools necessary for engineering practice;

3. Competencies:

Competencies	Learning Outcomes (LO'S)					
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	c2 Identify the concepts and theories of science necessary for engineering systems.c3 Applying engineering basics that are relevant to the subject.					
C5 Practice research techniques and methods of investigation as an inherent part of learning.	b1 Assess different ideas, views, and knowledge from a range of sources.					

4. Course Contents:

No.	Topics	Lecture	Practical	Tutorial	
	Computer architecture.				
1	practical: Visual Studio C# Interface	1	2	-	
	Writing simple statements				
2	Computer systems	2	4		
	Practical: Variables, Data type		4	-	

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Practical: Engineering Case Study. Total	14	28	_
9	Engineering applications in programming using one structured programming language.	1	2	-
8	Methods of solving problems and logical design for the programs and matrices. Practical: Nested loop	2	4	-
7	Computer graphics – Multimedia systems Practical: Loop Statement (For, while & do -while)	1	2	-
6	Data systems and information technology Practical: Loop Statement (For, while & do -while)	2	4	-
5	Internet networks Practical: Arrays	2	4	-
4	Computer networks Practical: Conditional Statements	2	4	-
3	Files systems Practical: Input & Output	1	2	-

5. Teaching and learning methods:

No	Topics	Fa ce- to- Fa ce Le ct ur e	On lin e Lec tur e	Fli pp ed Cla ssr oo m	Pre se nta tio n an d mo vie s	Dis cus sio n	Pro ble m sol vin g	Bra in sto rmi ng	Pro jec ts	Sit e visi ts	Sel f-le arn ing an d Re sea rch	Co op era tiv e	Dis cov eri ng	Mo del ing	lab
1	Computer architecture. practical: Visual Studio C# Interface Writing simple statements	х	х	х											х
2	Computer systems Practical: Variables, Data type	х	х			x									х
3	Files systems Practical: Input & Output	x	x			х									х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	•				 			 		
4	Computer networks Practical: Conditional Statements	х		х						х
5	Internet networks Practical: Arrays	х	х							Х
6	Data systems and information technology Practical: Loop Statement (For, while & do -while)	x	x							X
7	Computer graphics Multimedia systems Practical: Loop Statement (For, while do -while)	x	x		х					х
8	Methods of solving problems and logical design for the programs and matrices. Practical: Nested loop	x	х			х				x
9	Engineering applications in programming using one structured programming language. Practical: Engineering Case Study.	х	х							х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason			
1	Presentation of the course in digital material	Better access any time			
2	Web communication with students	Better communication with certain cases			
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different levels of students			

7. Student Evaluation:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1	c2, c3
2	Semester work (quizzes, sheets, report)	C5	b1, c3
3	Practical Examination	C1, C5	c2, c3
4	Final term examination	C1, C5	c3, b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	2 nd ,7 th ,9 th ,13 th
3	Practical Examination	14 th
4	Final term examination	15 th

7.3 weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	10%
2	final examination	60%
3	Practical examination	10%
4	Semester work	20%
	Total	100%

8. List of References:

No.	Reference List							
1	Darrell Hajek, Cesar Herrera "Introduction to Computers" CreateSpace Independent							
1	Publishing Platform (May 8, 2018).							
_	Ludwik Czaja "Introduction to Distributed Computer systems: Principles and features"							
	Springer; 1st ed. 2018.							

9. Facilities required for teaching and learning:

No.	Facility				
1	Lecture classroom	4	White board		
2	Computer lab	5	Data show system		
3	Presenter	6	Wireless internet		
7	Sound system				

10. Matrix of Competencies and LO's:

No.	Торіс	Aims	Competencies	LO's
1	Computer architecture. practical: Visual Studio C# Interface Writing simple statements	1	C1	c2
2	Computer systems Practical: Variables, Data type	1	C1	c2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3	Files systems Practical: Input & Output	1	C1	сЗ
4	Computer networks Practical: Conditional Statements	1	C1	c3
5	Internet networks Practical: Arrays	1	C1	c3
6	Data systems and information technology Practical: Loop Statement (For, while & do -while)	1, 7	C1	c3
7	Computer graphics – Multimedia systems Practical: Loop Statement (For, while & do -while)	1, 7	C1	c3
8	Methods of solving problems and logical design for the programs and matrices. Practical: Nested loop	7	C5	b1
9	Engineering applications in programming using one structured programming language. Practical: Engineering Case Study.	7	C5	b1

Course Coordinator: Dr. Amira El Sonbaty

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Mathematics (2) (MTH102)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Mathematics (2)
Course Code	MTH102
Year/Level	Level 1
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Teaching hours	Lectures	Tutorial	Practical
reaching nours	2	2	-

2. Course Aims:

No.	Aims
1	Master a broad range of fundamental Mathematical engineering knowledge and specialized skills of Analytical geometry and Integration, as well as the ability to apply acquired knowledge of Analytical geometry and Integration in real-world situations as determine the plain areas, circular volumes, plain technical length and circular surfaces by applying theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve mathematical engineering problems by using different methods.

3. Competencies:

Competencies	Learning Outcomes (LO'S)				
C1 Identify, formulate,	a1 Explain the relevant mathematical engineering principles and				
and solve complex	theories in the Analytical geometry and Integration.				
engineering problems	a3 Explain the basic concepts of Analytical geometry and Integration.				
by applying engineering	b1 Use the mathematical engineering principles and theories that				
fundamentals, basic	apply in the most fundamental problems.				
science, and	b3 Use the basics of integration and Geometry that are applicable to				
mathematics.	the field.				

4. Course Contents:

No.	Topic	Lecture	Tutorial	Practical I
140.	iopic	LCCCAIC	Iutonai	i i acticai

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Basic concepts- equations of second degree and double equation for two straight lines Movement and rotation of axes	4	4	-
2	Circle– conical sectors	6	6	-
3	Analytical geometry in space Cartesian coordinates Cylindrical-spherical -plane in space	2	2	1
4	Equations of surfaces in second order – rotation and movement of axes in space.	2	2	-
5	Indefinite integration (basic functions – theories) – method of integration	6	6	-
6	Definite integration (definition – properties -theories) Applications of definite integration (plain areas – circular volumes – plain technical length)	4	4	-
7	Areas – Circular surfaces	2	2	-
8	Numerical integration.	2	2	-
	Total	28	28	-

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Basic concepts- equations of second degree and double equation for two straight lines Movement and rotation of axes	x	х		х						
2	Circle– conical sectors	х	х			Х					
3	Analytical geometry in space Cartesian coordinates Cylindrical-spherica I -plane in space	х	х				x				
4	Equations of surfaces in second order – rotation and movement of axes in space.	x	x		x		x				
5	Indefinite integration (basic functions – theories) – method of integration	x	x		x	X					
6	Definite integration (definition — properties -theories) Applications of definite integration (plain areas — circular volumes — plain technical length)	x	x		x						
7	Areas – Circular surfaces	х				х	х				
8	Numerical integration.	х	х		х						

6. Teaching and learning methods for disabled students:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Teaching Methods	Reason				
1	Presentation of the course in digital material	Better access any time				
2	Web communication with students	Better communication with certain cases				
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students				

7. Student Evaluation:

7.1 Student Evaluation method

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1	a1, a3
2	Semester work (quizzes, sheets, report)	C1	b1, b3
3	Final term examination	C1	a1, a3, b1, b3

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	7 th - 9 th
3	Final term examination	15 th

7.3 weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

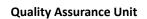
8. List of References:

No.	Reference List					
1	P.N.Chatterjee "Analytical Geometry Paperback"Anu Books (2019)					
2	Gerardus Blokdyk "System Integration A Complete Guide" 5STARCooks (2019).					
3	Chris McMullen "Essential Calculus Skills Practice Workbook with Full Solutions" Zishka Publishing (2018).					

9. Facilities required for teaching and learning:

Facility						
1	Lecture classroom	3	White board			
2	Seminar	4	Data Show system			

10. Matrix of Competencies and LO's:


No	Topic	Aims	Competencies	LO's
1	Position, Displacement, Velocity, and Acceleration of Particle	1	C1	a1, a3
2	Plane Motion path of Particle	1	C1	a1, a3
3	Description of plane Motion using Cartesian axes	1	C1	a1, a3
4	Projectiles	1	C1	a1, a3
5	Relative motion between particles	1	C1	a1, a3
6	Motion for particle in circular path	1	C1	a1, a3
7	Newton's second law of motion	1	C1	b1, b3
8	Principle of work and energy of motion	1	C1	b1, b3
9	Principle of conservation of mechanical energy	1	C1	b1, b3
10	Principle of impulse and momentum of rigid body	1	C1	b1, b3

Course Coordinator: Dr. Reda Abdo

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Mechanics (2) (ENG102)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Mechanics (2)
Course Code	ENG102
Year/Level	Level 1
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Tooching hours	Lectures	Tutorial	Practical		
Teaching hours	2	2	-		

2. Course Aims:

No.	Aims
1	Master a broad range of Mechanics knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying theories in analytic critical and systemic thinking to identify, diagnose, and solve engineering problems of varying complexity and variation.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
c1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a1 Define position, velocity and acceleration of particles and principles of conversation of mechanical energy. a2 Recognize methodologies of solving engineering problems including principles of work and energy. b1 Solve engineering problems to determine the velocity and position of projectile. c1 Apply knowledge of principle of work and principle of work and energy of motion and principle of conservation of mechanical energy and momentum of rigid body.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Position, Displacement, Velocity, and Acceleration of particle	4	4	-

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Total	28	28	-
10	Principle of Impulse and Momentum of rigid body	4	4	-
9	Principle of conservation of mechanical energy	2	2	_
8	Principle of work and energy of motion	4	4	-
7	Newton's second law of motion	4	4	-
6	Motion for particle in circular path	2	2	_
5	Relative motion between particles	2	2	_
4	Projectiles	2	2	-
3	Description of plane motion using Cartesian axes	2	2	-
2	Plane Motion Path of Particle	2	2	-

5. Teaching and learning methods:

No	Topics	Face-to-FaceLecture	OnlineLecture	FlippedClassroom	Presentation and movies	D is c u s si o n	Proble msolving	B rainstorm ing	P r o j e c ts	Si t e vi si ts	S el f-le a r n - n & a n d R e s e a r c h	C o o p e r a ti v e	Discoverings	∑ odei n w	la b
1	Position, Displacement, Velocity, and Acceleration of Particle	x	x			x									
2	Plane Motion path of Particle	x	х			X									

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3	Description of plane Motion using Cartesian axes	х	х	х							
4	Projectiles	Х	Х				х				
5	Relative motion between particles	x	х		х						
6	Motion for particle in circular path	х	х		х						
7	Newton's second law of motion	х	х			х					
8	Principle of work and energy of motion	х	х	х							
9	Principle of conservation of mechanical energy	х	х		х						
10	Principle of impulse and momentum of rigid body	x	х			х					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

6. Teaching and learning methods for disabled students:

		•				
No.	Teaching Methods	Reason				
1	Presentation of the course in digital material	Better access any time				
2	Wed communication with students	Better communication with certain cases				
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students				

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1	a1, a2, b1
2	Semester work (quizzes, sheets, report)	C1	b1, c1
3	Final term examination	C1	a1, a2, b1, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	2 nd -7 th - 9 th -14 th
3	Final term examination	15 th

7.3 weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

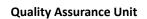
No.	Reference List
1	Marcelo R. M. Crespo da Silva "Fundamentals of Dynamics and Analysis of Motion" 2nd
	edition, Dover Publications; (2019).
,	C. Hibbeler, Russell "Engineering Mechanics: Dynamics in SI Units, Global Edition" 14th
2	edition, P&C ECS; 15th edition 2018).

9. Facilities required for teaching and learning:

	Facility									
1	Lecture classroom	3	White board							
2	Seminar	4	Data Show system							

10. Matrix of Competencies and LO's:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta


No	Topic	Aims	Competencies	LO's
1	Position, Displacement, Velocity, and Acceleration of Particle	1	C1	a1
2	Plane Motion path of Particle	1	C1	a1
3	Description of plane Motion using Cartesian axes	1	C1	a2
4	Projectiles	1	C1	b1
5	Relative motion between particles	1	C1	b1
6	Motion for particle in circular path	1	C1	a2
7	Newton's second law of motion	1	C1	b1
8	Principle of work and energy of motion	1	C1	a2
9	Principle of conservation of mechanical energy	1	C1	a1
10	Principle of impulse and momentum of rigid body	1	C1	c1

Course Coordinator: Dr. Moataz Mostafa

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Physics (2) (PHY102)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Physics (2)
Course Code	PHY102
Year/Level	Level 1
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

To obline house	Lectures	Tutorial	Practical
Teaching hours	2	2	2

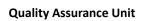
2. Course Aims:

No.	Aims
1	Master a broad range of engineering physics knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying theories in analytic critical and systemic thinking to identify, diagnose, and solve engineering problems of varying complexity and variation.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a1 Define concepts and theories of physics necessary for engineering system analysis. a2 Study solving engineering problems including Einstein's quantum hypothesis, laws of reflection and refraction, interference, and diffraction. a3 Define measurement devices in electrical conductivity, basic characteristics, and properties. b2 Select the appropriate solutions for engineering problems including Newton's Rings and design of optical fibers.
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and	a2 Describe quality assurance systems, codes of practice and standards, health and safety requirements, and environmental issues.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta


objective engineering judgment to draw conclusions.	
C6 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	c1 Conduct troubleshooting in chemical engineering plants.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Basic of electricity. Practical: measurement devices in electrical conductivity.	2	2	4
2	Column's law and Gauss's law. Practical: sensitivity of galvanometer.	4	4	2
3	capacitors and capacitance. Practical: capacitors and capacitance	2	2	2
4	Currents and Resistance. Practical: ohm's law - series connection ∥ connection& resistance color code& meter bridge - voltmeter resistance.	4	4	10
5	Magnetic field and magnetic force. Practical: the inverse square law in magnetism.	4	4	2
6	The nature and propagation of light. Practical: the glass prism.	4	4	2
7	Optical fiber. Practical: the glass prism.	2	2	2
8	Introduction to Quantum theory.	2	2	0
9	Laser. Practical:	2	2	0
10	Lenses and mirrors. Practical: spherometer- mirrors and lenses.	2	2	4
	Total	28	28	28

5. Teaching and learning methods:

No	Topics	Faceto-FaceLecture	OnlineLecture	Flipped Classroom	Presentation and movies	D is c u s si o n	Problems olv: ng	B rainstorm in g	P r o j e c ts	Si t e vi si ts	S elf-le a r n i n gand R e s e a r c h	Cooperative	D is c o v e ri n g	M o d el i n g	la b
1	Basic of electricity. Practical: measurement devices in electrical conductivity.	x	х			X									х
2	Column's law and Gauss's law. Practical: sensitivity of galvanometer.	х	х				X								х
3	capacitors and capacitance. Practical: capacitors and capacitance	X	х					X							х
4	Currents and Resistance. Practical: ohm's law - series connection ∥ connection& resistance color code& meter	х	х			x	х								x

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	bridge - voltmeter resistance.										
5	Magnetic field and magnetic force. Practical: the inverse square law in magnetism.	х	х		х						х
6	The nature and propagation of light. Practical: the glass prism.	х	х			x					х
7	Optical fiber. Practical: the glass prism.	х	х				x				х
8	Introduction to Quantum theory.	х	х			х					х
9	Laser. Practical:	х	х				х				х
10	Lenses and mirrors. Practical: spherometer- mirrors and lenses.	х	х			х					х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason				
1	Presentation of the course in digital material	Better access any time				
2	Web communication with students	Better communication with certain cases				
3	Asking small groups to do assignments, each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different levels of students				

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1, C2, C6	a1, a3, a2, c1
2	Semester work (quizzes, sheets, report)	C1, C2, C6	a1, a3
3	Final term examination	C1	a1, a2, b2
4	Practical exam	C1, C6	a2, b2, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Midterm examination	8 th
2	Semester work	5 th ,7 th ,14 th
3	Final term examination	15 th

7.3 weighting of Evaluation:

No.	Evaluation Method	Weights	
1	Mid-term examination	10%	
2	final examination	60%	
3	Practical examination	10%	
4	Semester work	20%	
	Total 100%		

8. List of References:

No.	Reference List	
1	Shankar, Ramamurti. Fundamentals of Physics II. Yale University Press, 2021.	
2	Peter J. Williams; Firas Mansour; Robert L. Hawkes; (Nuclear physicist) Javed Iqbal; Marina Milner-Bolotin. Physics for scientists and engineers: an interactive approach, Nelson	
	Education Ltd., Year: 2019	
3	David Halliday, Robert Resnick, Jearl Walker. Fundamentals of Physics, 9th Edition, Binder Ready Version, 2019	
4	Serway, Raymond A., and John W. Jewett. Physics for scientists and engineers. Cengage learning, 2018.	

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Laboratory
3	Presenter
4	White board
5	Data show system

10. Matrix of Competencies and LO's:

No.	Торіс	Aims	Competencies	LO's
1	Basic of electricity. Practical: measurement devices in electrical conductivity.	1	C1, C2	a1, a3
2	Column's law and Gauss's law. Practical: sensitivity of galvanometer.	1	C1, C2, C6	a1, a2, c1
3	capacitors and capacitance. Practical: capacitors and capacitance	1	C1, C2, C6	a1, a2, c1
4	Currents and Resistance.	1	C1, C2, C6	a1, a3 a2, c1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Practical: ohm's law - series connection ∥ connection& resistance color code& meter bridge - voltmeter resistance.			
5	Magnetic field and magnetic force. Practical: the inverse square law in magnetism.	1	C1, C2, C6	a1, a2, c1
6	The nature and propagation of light. Practical: the glass prism.	1	C1, C2, C6	a2, c1
7	Optical fiber. Practical: the glass prism.	1	C1, C2, C6	b2, a2, c1
8	Introduction to Quantum theory.	1	C1, C2, C6	a2, c1
9	Laser. Practical:	1	C1, C2, C6	b2, a2, c1
10	Lenses and mirrors. Practical: spherometer- mirrors and lenses.	1	C1, C2, C6	a2, b2 a2, c1

Course Coordinator: Assoc. Prof. Dr. Amal Bahiry & Dr. Ahmed Lotfy

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Production Engineering (ENG105)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Production Engineering
Course Code	ENG105
Year/Level	Level 1
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Too shing hours	Lectures	Tutorial	Practical
Teaching hours	3	-	2

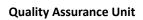
2. Course Aims:

No.	Aims	
1	Master a broad range of production engineering knowledge and specialized skills, as well as	
	the ability to apply acquired knowledge in real-world situations.	
2	Work in and manage a diverse team of professionals from various engineering disciplines, taking responsibility for own and team performance; and behave professionally and adhere to engineering ethics and standards.	
3	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.	

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	 a1 Explain the basic principles of production engineering. a3 List the characteristics of engineering materials related to production engineering. b3 Evaluate the characteristics and performance of engineering materials related to production engineering
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global,	c1 Apply engineering knowledge to improve products of modern tools, systems, and procedure, to make the engineering process more balanced costs, benefits, safety, quality and reliability and environmental impact.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta


cultural, social, economic, and	c2 Apply safe systems including the use laboratory and
environmental.	field equipment competently
C6 Plan, supervise and monitor of production process, taking into consideration other trades requirements.	a1 Show the conventional procedures and characterization of common engineering materials and components. c2 Acquire production skills.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	The engineering substances and its properties Practical: engineering materials	3	-	2
2	Heating and cooling diagrams Practical: iron and steel production	3		2
3	Heating equilibrium diagrams Practical: heat treatment	3	-	2
4	Alloys - Casting operation (sand casting and the preparation of the mold) Practical: metal casting & mold for a sand casting& carpenter workshop	6	-	4
5	Forming processes (cold and hot forming: forging rolling – Wire drawing – Blanking and piercing - Deep drawing - The extrusion) Practical: metal forming	6	1	4
6	Processes of metal connections (the riveting – welding with its types sticking) Practical: metal joining process	6	-	2
7	Cutting machining: Lathing - Shaping - Drilling -Milling - Grinding - Work Piece fixation - Cutting tools fixation - Specifications of the operating machine) Practical: carpenter workshop	6	-	2
8	Methods of solving problems Practical: metal machining	3	1	2
9	Measuring tools (venire caliper – micrometers and its types) Practical: measurement tools	3	-	4
10	Production cycle production efficiency - Industrial safety Practical training in the different workshops	3	-	4
	Total	42	-	28

5. Teaching and learning methods:

No	Topics	Faceto-FaceLecture	OnlineLecture	Flipped Classroom	Presentation and movies	D is c u s si o n	Problem solvings	B rai n st o r m i n g	P r o j e c ts	Si t e vi si ts	Self-le arning and Research	C o o p e r a ti v e	D is c o v e ri n g	M o d el i n g	la b
1	The engineering substances and its properties Practical: engineering materials	x	X			x									x
2	Heating and cooling diagrams Practical: iron and steel production	x	X												x
3	Heating equilibrium diagrams Practical: heat treatment	х	х	х											x
4	Alloys - Casting operation (sand casting and the preparation of the mold)	x													х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

				1	1					
	Practical: metal									
	casting & mold for a sand casting&									
	carpenter									
	workshop									
5	Forming processes (cold and hot forming: forging rolling – Wire drawing – Blanking and piercing - Deep drawing – The extrusion) Practical: metal forming	x	x							х
6	Processes of metal connections (the riveting – welding with its types sticking) Practical: metal joining process	х	х							х
7	Cutting machining: Lathing - Shaping - Drilling -Milling - Grinding - Work Piece fixation - Cutting tools fixation - Specifications of the operating machine) Practical: carpenter workshop	х	x							х
8	Methods of solving problems Practical: metal machining	х	х		х	х				х
9	Measuring tools (venire caliper – micrometers and its types)	х	х							х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Practical: measurement tools									
10	Production cycle production efficiency - Industrial safety Practical training in the different workshops	х	х		x					x

6. Teaching and learning methods for disabled students:

	<u> </u>						
No.	Teaching Methods	Reason					
1	Presentation of the course in digital material	Better access any time					
2	Web communication with students	Better communication with certain cases					
3	Asking small groups to do assignments, each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different levels of students					

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1	a1, a3, b3
2	Semester work (quizzes, sheets report),	C3	c1, c2
3	Practical Exam	C3	c1, c2
4	Final term examination	C1	a1, b3, a3

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Practical examination	8 th
2	Periodic exam	7 th ,9 th ,14 th
3	Final term examination	15 th

7.3 weighting of Evaluation:

No.	Evaluation Method	Weights
1	final examination	60%
2	Practical examination	8%
3	Periodic exam	32%
	Total	100%

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

8. List of References:

No.	Reference List
1	Shanker, Kripa, Shankar, Ravi, Sindhwani, Rahu "Advances in Industrial and Production
	Engineering" 1st edition, Springer Nature Singapore Pte Ltd. (2018).
2	Jeff Hansen "Manufacturing and Production Engineering: Planning and Control" Willford
	Press (2018).

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Production engineering workshops
2	Presenter
3	White board
4	Data show system
5	Sound system

10. Matrix of Competencies and LO's:

No.	Topic	Aims	Competencies	LO's
1	The engineering substances and its properties Practical: engineering materials	1	C1	a1, a3
2	Heating and cooling diagrams Practical: iron and steel production	1	C1	a3
3	Heating equilibrium diagrams Practical: heat treatment	1	C1	b3
4	Alloys - Casting operation (sand casting and the preparation of the mold) Practical: metal casting & mold for a sand casting& carpenter workshop	1, 3	C3	c1, c2
5	Forming processes (cold and hot forming: forging rolling – Wire drawing – Blanking and piercing - Deep drawing - The extrusion) Practical: metal forming	1, 2	C3	c1, c2
6	Processes of metal connections (the riveting – welding with its types sticking) Practical: metal joining process	1, 3	C3	c1, c2
7	Cutting machining: Lathing - Shaping - Drilling -Milling - Grinding - Work Piece fixation - Cutting tools fixation - Specifications of the operating machine) Practical: carpenter workshop	1, 2, 3	C6	a1, c2
8	Methods of solving problems Practical: metal machining	1, 3	C1	b3

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Topic	Aims	Competencies	LO's
	Measuring tools (venire caliper – micrometers and its			
9	types)	1, 3	C3	c1
	Practical: measurement tools			
10	Production cycle			
10	production efficiency - Industrial safety	1, 3	C6	c2
	Practical training in the different workshops			

Course Coordinator: Dr. Moataz Mostafa

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Introduction to Engineering and Environment (ENG106)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Introduction to Engineering and Environment
Course Code	ENG106
Year/Level	Level 1
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Tooching house	Lectures	Tutorial	Practical		
Teaching hours	2	-	-		

2. Course Aims:

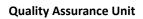
No.	Aims
3	Recognize his or her role in promoting engineering and contributing to the profession's and community's development; by appreciating the importance of the environment, both physical and natural, and working to promote sustainability concepts

3. Competencies:

5. Competencies.					
Competencies	Learning Outcomes (LO'S)				
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	a2 Explain the scientific principles and theories that apply to the topic. a3 Explain the basic principles of engineering. b2 Use scientific concepts and theories that are relevant to the profession. c3 Solve complex engineering problems by applying engineering fundamentals.				
c3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles	costs, benefits, safety, quality, reliability, and				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

and contexts of sustainable design and development.


c1 Incorporate economic, societal, global, environmental, and risk management factors into design.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Engineering concepts: What is engineering – international classification for the engineering jobs – Relation between engineering development and environment economic and social development – Engineering branches – Ethics of the engineering jobs.	10	-	-
2	Introduction to environmental science: the importance of studying environmental science	2	-	-
3	Modern technology and its effect on the environment – Quality of the environment and development elements	4	-	-
4	Sources of environmental pollution and method of control (air pollution – water pollution – solid wastes pollution – economics of environmental pollution control – legislations for the environment protection.	12	-	-
	Total	28	-	-

5. Teaching and learning methods:

No	Topics	Faceto-FaceLecture	OnlineLecture	FlippedClassroom	Presentation and movies	D is c u s si o n	Problems olv: ng	B rainstorm in g	P r o j e c ts	Si t e vi si ts	S el f-le a r n i n g a n d R e s e a r c h	Cooperative	D is c o v e ri n g	Model in g	la b
1	Engineering concepts: What is engineering — international classification for the engineering jobs — relation between engineering development and environment economic and social development — engineering branches — ethics of the engineering jobs.	x	x								x				
2	Introduction to environmental science: the importance of	х	х								х				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	studying environmental science									
3	Modern technology and its effect on the environment – quality of the environment and development elements	х	x	x				х		
4	Sources of environmental pollution and method of control (air pollution – water pollution – solid wastes pollution –noise) – economics of environmental pollution control – legislations for the environment protection.	x	x	x				x		

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason				
1	Presentation of the course in digital material.	Better access any time.				
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different levels of students.				

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Mid Term Examination	C1, C3	a2, a3, b1, b2
2	Semester work (quizzes, sheets, report)	C3	c1, c3
3	Final Term Examination	C1, C3	b1, b2, c3

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks					
1	Semester work (Sheets, Quiz and Reports)	2 nd , 7 th , 9 th					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Mid Term Examination	8 th
3	Final Term Examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	د. جمال صالح السلامة من الكوارث الطبيعية والمخاطر البشرية، دار الشروق، 2019
2	Raju, Fundamental of air pollution, Oxford & IBH, 2019.

9. Facilities required for teaching and learning:

	<u> </u>
No.	Facility
1	Seminar
2	Lecture Classroom
3	White Board
4	Data Show system

10. Matrix of Competencies and LO's:

No	Торіс	Aims	Competencies	LO's
1	Engineering concepts: What is engineering – international classification for the engineering jobs – relation between engineering development and environment economic and social development – engineering branches – ethics of the engineering jobs.	3	C3	a2, a3
2	Introduction to environmental science: the importance of studying environmental science	3	C1	a2, b2
3	Modern technology and its effect on the environment – quality of the environment and development elements	3	C3	b1, c1
4	Sources of environmental pollution and method of control (air pollution – water pollution – solid wastes pollution –noise) – economics of environmental pollution control – legislations for the environment protection.	3	C1	b2, c3

Course Coordinator: Prof. Dr. Osami Rageh & Assoc. Prof. Dr. Ramadan Elkateb

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Quality Assurance Unit

<u>Technical English Language (1)</u> (LNG101)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Technical English Language (1)
Course Code	LNG101
Year/Level	Level 1
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Tanahina hawa	Lectures	Tutorial	Practical		
Teaching hours	1	-	2		

2. Course Aims:

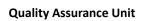
No.	Aims
	Communicate effectively with a variety of audiences using a variety of forms, methods, and
5	languages; cope with academic and professional issues in a critical and creative manner;
	and display leadership, business administration, and entrepreneurial abilities.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C8 Communicate effectively graphically, verbally and in writing with a range of audiences using contemporary tools.	d1 Communicate effectively with a range of audiences using contemporary tools.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Engineering Lab.: skills in English Lesson 1 Bob's Day at work & Lesson 2 Bob returns home with bad news	3	ŀ	6
2	A private flat Lab.: skills in English Lesson 3 Ted's Day at school	1	1	2
3	Bookshelves Lab.: skills in English	1	-	2



Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Lesson 4 Nicole's day at school			
4	Bridges Lab.: skills in English Lesson 5 Ted goes out for the evening. Grammar Topics	2	-	4
5	Reinforced concrete Lab.: skills in English Lesson 6 Susan stays home and bake cookies & Lesson 7 Susan hires Bob to run her own business	2	-	4
6	Surveying Lab.: skills in English Lesson 8 Ted forms a rock band & Lesson 9 Nicole for president	2	1	4
7	Hydraulic works Lab.: skills in English Lesson 10 Bob visits the village market	2	1	4
8	Soil mechanics and foundations Lab.: skills in English Grammar topics	1	-	2
	Total	14	-	28

5. Teaching and learning methods:

No	Topics	Faceto - FaceLecture	OnlineLecture	FlippedClassroom	Present ation and movies	D is c u s si o n	Proble M solving	B rainstorm in g	P r o j e c ts	Si t e vi si ts	Self-le arningand Research	Cooperative	Discovering	Model ing	la b
1	Engineering Lab.: skills in English Lesson 1 Bob's Day at work & Lesson 2 Bob returns home with bad news	x	х		x										x
2	A private flat Lab.: skills in English Lesson 3 Ted's Day at school	х	х												х
3	Bookshelves Lab.: skills in English Lesson 4 Nicole's day at school	х	х												х
4	Bridges Lab.: skills in English	х	х		x										х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Lesson 5 Ted goes out for the evening. Grammar Topics								
5	Reinforced concrete Lab.: skills in English Lesson 6 Susan stays home and bake cookies & Lesson 7 Susan hires Bob to run her own business	х	х	х					x
6	Surveying Lab.: skills in English Lesson 8 Ted forms a rock band & Lesson 9 Nicole for president	х	х						х
7	Hydraulic works Lab.: skills in English Lesson 10 Bob visits the village market	x	х						x
8	Soil mechanics and foundations Lab.: skills in English Grammar tonics	x	х						х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different level of students.

7. Student Evaluation:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C8	d1
2	Semester work (quizzes, sheets, report)	C8	d1
3	Practical exam	C8	d1
4	Final term examination	C8	d1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	7 th ,9 th
3	Practical examination	14 th
4	Final term examination	15 th

7.3 weighting of Evaluation:

No.	Evaluation Method	Weights	
1	Mid-term examination	10%	
2	Practical examination	10%	
3	Semester work	20%	
4	Final-term examination	60%	
	Total 100%		

8. List of References:

No.	Reference List		
1	David Bonamy "Technical English" Longman Publishing Group 2018		
2	Paul J. Hamel "English for Better Jobs 1: Language for Working and Living" Create Space Independent Publishing Platform; 1st edition (2019)		
3	Mahmood Reza Atai, Alireza Zaré Alanagh, Morteza Nasiri and Reza Taherkhani "English for The Students of Engineering" 1st edition, SAMT Publication (2021).		

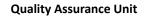
9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Computer lab.
3	Seminar
4	White board
5	Data Show system

10. Matrix of Competencies and LO's:

No	Торіс	Aims	Competencies	LO's
1	Engineering	5	C8	d1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta


No	Торіс	Aims	Competencies	LO's
	Lab.: skills in English Lesson 1 Bob's Day at work & Lesson 2 Bob returns home with bad news			
2	A private flat Lab.: skills in English Lesson 3 Ted's Day at school	5	C8	d1
3	Bookshelves Lab.: skills in English Lesson 4 Nicole's day at school	5	C8	d1
4	Bridges Lab.: skills in English Lesson 5 Ted goes out for the evening. Grammar Topics	5	C8	d1
5	Reinforced concrete Lab.: skills in English Lesson 6 Susan stays home and bake cookies & Lesson 7 Susan hires Bob to run her own business	5	C8	d1
6	Surveying Lab.: skills in English Lesson 8 Ted forms a rock band & Lesson 9 Nicole for president	5	C8	d1
7	Hydraulic works Lab.: skills in English Lesson 10 Bob visits the village market	5	C8	d1
8	Soil mechanics and foundations Lab.: skills in English Grammar topics	5	C8	d1

Course Coordinator: Dr. Doaa Elshrbiny

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Mathematics (3) (MTH201)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Mathematics (3)
Course Code	MTH 201
Year/Level	Level 2
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	MTH101

Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims:

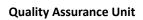
No) .	Aims			
1		Master a broad range of fundamental Mathematical engineering knowledge and solve of ordinary differential equations and partial differentiation applications, as well as the ability to apply acquired knowledge of ordinary differential equations and partial differentiation applications in real-world situations by applying theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve multi-integrations of mathematical engineering.			

3. Competencies:

Competencies	Learning Outcomes (LO'S)			
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a1 Understand the relevant engineering mathematical of ordinary differential equations and applications of Partial differentiation equations. a2 Describe the effect of mathematical engineering principles and theories that apply in the most fundamental problems. a3 Define the basic concepts of ordinary differential equations and Partial differentiation equations. b1 Applying the basics of ordinary differential equations and applications of Partial differentiation equations in engineering problems. 			

4. Course Contents:

No.	Торіс	Lecture s	Tutorial	Practical
-----	-------	------------------	----------	-----------



Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Total	28	28	l <u> </u>
	Inverse la-place transform			
6	Laplace transforms of derivatives.	4	2	-
_	Important properties of la-place transform	_		
	Convergence of la-place transform			
	Non-homogeneous linear differential equations			
5	constant coefficients	4	2	_
	Second order homogeneous differential equations with			
	Bernoulli's equation the linear differential operator		•	
	linear differential equation		4	_
4	Exact differential equation	4		_
	Homogenous differential equations		2	_
	Separable differential equations		4	_
	Basic concepts Formation of the differential equations		2	_
	Gauss and stokes's theory			
J	Surface integral	10	4	_
3	Line integral in space, green's theorem	10	4	_
	Double integral Triple integral			
2	Partial derivatives of higher order extreme for functions of two variables	4	4	-
	Continuity in multivariable functions			
1	Limits of functions of several variables.	2	4	-
	Functions of several variables			

5. Teaching and learning methods:

No	Topics	Faceto - FaceLecture	OnlineLecture	Flipped Classroom	Presentation and movies	D is c u s si o n	Problems olv: ng	B rain storm in g	P r o j e c ts	Si t e vi si ts	Self-le arning and Research	Cooperative	D is c o v e ri n g	Model: ng	la b
1	Functions of several variables Limits of functions of several variables. Continuity in multivariable functions	x	х			x	x								
2	Partial derivatives of higher order extreme for functions of two variables	х	х			х		х							
3	Double integral Triple integral Line integral in space, green's theorem Surface integral Gauss and stokes's theory	x	х			х	х								

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4	Basic concepts Formation of the differential equations Separable differential equations Homogenous differential equations Exact differential equation linear differential equation Bernoulli's equation the linear differential operator	x	x		x		x				
5	Second order homogeneous differential equations with constant coefficients Non-homogeneous linear differential equations	х	x		x	x					
6	Convergence of la-place transform Important properties of la-place transform Laplace transforms of derivatives. Inverse la-place transform	x	x		х		х				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason		
1	Presentation of the course in digital material	Better access any time		
2	Web communication with students	Better communication with certain		
	Web communication with students	cases		

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3	Asking small groups to do assignments; each composed of low, medium and high-performance students	Knowledge and skills transfer among different levels of students
---	---	--

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1	a1, a2
2	Semester work (quizzes, sheets, report)	C1	a2, a3
3	Final term examination	C1	a1, a2, a3, b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	2 nd -7 th - 14 th
3	Final term examination	15 th

7.3 weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	Harumi Hattori " Partial Differential Equations: Methods, Applications and Theories" WSPC;
	2nd edition (2019).
2	Schaeffer, David, Cain, John Wesley "Ordinary Differential Equations: Basics and Beyond"
	2nd edition, Springer-Verlag New York (2020).
3	Yuefan Deng "Lectures, Problems and Solutions for Ordinary Differential Equations" 2nd
	edition, WSPC; Second Edition (2017).

9. Facilities required for teaching and learning:

	Facility							
1	Lecture classroom	3	White board					
2	Seminar	4	Data Show system					

10. Matrix of Competencies and LO's methods:

No	Торіс	Aims	Competencies	LO's
1	Functions of several variables	1	C1	a1, a2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Limits of functions of several variables. Continuity in multivariable functions			
2	Partial derivatives of higher order extreme for functions of two variables	1	C1	a1, a2
3	Double integral Triple integral Line integral in space, green's theorem Surface integral Gauss and stokes's theory	1	C1	a2
4	Basic concepts Formation of the differential equations Separable differential equations Homogenous differential equations Exact differential equation linear differential equation Bernoulli's equation the linear differential operator	1	C1	a1, a3
5	Second order homogeneous differential equations with constant coefficients Non-homogeneous linear differential equations	1	C1	a3
6	Convergence of la-place transform Important properties of la-place transform Laplace transforms of derivatives. Inverse la-place transform	1	C1	b1

Course Coordinator: Dr. Reda Abdo

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Civil Engineering Drawing (CIE201)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Civil Engineering Drawing
Course Code	CIE201
Year/Level	Level 2
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	ENG105

Too shing house	Lectures	Tutorial	Practical
Teaching hours	1	4	-

2. Course Aims

No.	Aims
4	Use the techniques, skills, and current engineering tools required for engineering drawing practice for irrigation works structures, reinforced concrete structure, and steel structures.
10	Select appropriate and sustainable technologies for drawing the irrigation works structures, reinforced concrete structure, and steel structures such as AUTOCAD program.

3. Competencies:

Competencies	Learning Outcomes (LO'S)					
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a2 Define the principles, (general concepts- legends and symbols – scales and drawing size – general layout and views. a3 Define the principal types of irrigation works (bridges, culverts, syphons) – reinforcement details – steel sections. 					
C11 Select appropriate and sustainable technologies for drawing structures; using computer programs (AUTO CAD program).	c1 Using either numerical technique (AUTO CAD program)					
C12 Achieve an optimum details of drawing irrigation works,	b1 Achieve the optimum planning and drawing main views, and the detail of irrigation works structures					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

reinforcement details and steel	(bridges, culverts, syphons) – reinforcement details –
sections	reinforces concrete structure and steel structures sections.

4. Course Contents:

No.	Topics	Lecture s	Tutorial	Practical
1	Introduction to civil engineering projects drawings (general concepts- legends and symbols – scales and drawing size – general layout and views – longitudinal and cross sections – detailing – drawings include steel structural cross-sections and details, irrigation works structures (culverts, bridges, and syphons), reinforcement details, reinforced concrete structures views and reinforcement details.	8	32	1
2	AutoCAD fundamentals of civil engineering drafting by way of computer aided drawing (CAD) software.	4	16	-
3	Basic features and capabilities of CAD software.	2	8	-
	Total	14	56	-

5. Teaching and learning methods:

5. Icacining and ica		,												
	Fa	0	Fli	Pr	Di	Pr	Br	Pr	Si	Se	С	Di	М	la
	ce	nl	р	es	sc	0	ai	oj	te	lf-	0	sc	0	b
	to	in	р	е	us	bl	n	ес	vi	le	0	0	d	
	fa	е	е	nt	si	е	st	ts	sit	ar	р	ve	eli	
	ce	Le	d	at	0	m	or		S	ni	er	ri	n	
	Le	ct	CI	io	n	so	m			n	at	n	g	
	ct	ur	as	n		lvi	in			g	iv	g		
Topics	ur	е	sr	а		n	g			а	е			
Topics	е		0	n		g				n				
			0	d						d				
			m	m						R				
				0						es				
				vi						ea				
				es						rc				
										h				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Introduction to civil engineering projects (general concepts-legends and symbols – scales and drawing size – general layout and views – longitudinal and cross sections – detailing – drawings include structural steel sections and details, culverts roof and floor views, reinforcement details, housing details.	x	X		x	x				
AutoCAD fundamentals of civil engineering drafting by way of computer aided drawing (CAD) software.	x	x		Х	x				
Basic features and capabilities of CAD software.	х	х		х	х				

6. Teaching and learning methods for disabled students:

	i caraming and rearming meanings for anomore organism.							
No.	Teaching Methods	Reason						
1	Presentation of the course in digital material	Better access any time						
2	Wed communication with students	Better communication with certain cases						
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students						
4	Electronic model system for the Institution.	Better access any time						

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Mid torm avamination	C1	a2, a3
1	Mid-term examination	C12	b1
		C1	a2, a3
2	Semester work	C12	b1
		C11	c1
4	Final target availables	C1	a2, a3
4	Final term examination	C12	b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	semester work	2 nd ,7 th , 9 th
2	Mid Term examination	8^{th}
3	Final term examination	15^{th}

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

8. List of References:

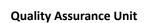
No.	Reference List
1	Waller, Peter, Yitayew, Muluneh. (2016) Irrigation and Drainage Engineering. Available from
1	your library or springer.com/shop.
2	Bedient, P.B., and Huber, W.C., (1988). "Hydrology and floodplain Analysis". Addison-Wesley
2	Publishing Company.p.650.
3	Deming, D., (2002)."Introduction to Hydrogeology". McGraw-Hill, New York.
4	Han, D., (2010). "Concise Hydrology". Download free Textbook at bookboon.com. P.145.

9. Facilities required for teaching and learning:

Facility						
1	Lecture classroom	3	White board			
2	Seminar	4	Data show system			

10. Matrix of knowledge and LO'S skills of the course:

No	Торіс	Aims	Competencies	LO's
----	-------	------	--------------	------


Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Introduction to civil engineering projects (general concepts- legends and symbols – scales and drawing size – general layout and views – longitudinal and cross sections – detailing – drawings include structural steel sections and details, culverts roof and floor views, reinforcement details, housing details.	1	C1 C12	a2, a3 b1
2	Estimating of water requirements AutoCAD fundamentals of civil engineering drafting by way of computer aided drawing (CAD) software.	10	C11	C1
3	Basic features and capabilities of CAD software.	10	C11	C1

Course Coordinator Assoc. Prof. Dr. Mohamed Gabr **Head of Department:** Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Structures Analysis (1) (CIE202)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Structures Analysis (1)
Course Code	CIE202
Year/Level	Level 2
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	ENG101

Too shing hours	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims

No.	Aims
1	Applying theories and abstract thinking in analytic critical and systemic thinking to solve
1	engineering problems of varying complexity and variation.
10	Select appropriate and sustainable technologies for construction of buildings

3. Competencies:

Competencies	Learning Outcomes (LO'S)						
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a3 Explain the basic principles of engineering for structural analysis. b3 Applying engineering basics that are relevant to the structural analysis. c3 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals. 						

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

- **C2** Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.
- C11 Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.
- **a1** Define, basic characteristics, properties, concepts, and techniques of structural analysis and mechanics.
- **c3** Applying statistical analyses and objective engineering judgment to draw conclusions.
- **a1** Recognize the fundamentals of structural analysis and mechanics.
- **c1** Using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Basic concept in structural analyses	2	2	-
2	Loads and reactions	4	4	-
3	Statically determinate beams	4	4	-
4	Statically determinate rigid frames	4	4	-
5	Statically determinate arches	4	4	-
6	Statically determinate trusses.	6	6	-
7	Influence lines for Statically determinate structures	4	4	-
	Total	28	28	-

5. Teaching and learning methods:

Topics	Fa ce to fa ce Le ct ur e	O nli ne Le ct ur e	Fli pp ed Cl as sr oo m	Pr es en tat io n an d m ov ies	Di sc us sio n	Pr ob le m sol vi ng	Br ai n st or mi ng	Pr oj ec ts	Sit e vis its	Se If-I ea rni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	la b
Basic concept in structural analyses	х	х			х	х								
Loads and reactions	х	х			x	х								

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Statically determinate beams	х	х		х	х				
Statically determinate rigid frames	х	х		х	х				
Statically determinate arches	x	х		х	х				
Statically determinate trusses.	x	х		х	x				
Influence lines for Statically determinate structures	х	x		х	x				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different level of students.

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1	a3, c3
		C11	c1
2	Semester work (quizzes, sheets, report)	C2	a1, a3
	Semester work (quizzes, sheets, report)	C11	a1, c1
3	Final term examination	C1 C2 C11	a3, b3, c3 a1, a3 a1, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8^{th}
2	Semester work	2 nd , 7 th , 9 th

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3 Final term examination 15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights	
1	Midterm examination	20%	
2	Semester work	20%	
3	Final term examination	60%	
	Total 100%		

8. List of References:

No.	Reference List				
	Essential books (textbooks)				
	•	W. M. El-dakhakhni, "Theory of Structures", Part One, Assiut University, 2016.			
1 ● W. M. El-dakhakhni, "Theory of Structures", Part Two, Assiut University, 2016					
	•	El-Sayed El-Kasaby and Fayez Kaiser, "Theory of Structures-Solved examples", Part 1,			
	2018.				
	Recom	mended books			
	•	Structural Analysis, R. C. Hibbeler, 2020.			
2	•	Structural Analysis 1: Statically Determinate Structures, S. Khalfalla, September			
	-2018				
	•	Structural Analysis, R. C. Hibbeler, 2018			
3	Structu	ural Engineering Web Sites -ASCE Periodicals.			

9. Facilities required for teaching and learning:

	Facility			
1	Seminar	3	teaching aids as interactive (smart) board	
2	discussions rooms with internet connections	4	Data show	

10. Matrix of knowledge and LO's skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Basic concept in structural analyses	1, 10	C1	a3
2	Loads and reactions	1, 10	C1	с3
3	Statically determinate beams	1, 10	C1, C2, C11	a1, c3
4	Statically determinate rigid frames	1, 10	C1, C2, C11	a1, c3
5	Statically determinate arches	1, 10	C1, C2, C11	a1, c3
6	Statically determinate trusses.	1, 10	C1, C2	c3
7	Influence lines for Statically determinate structures	1, 10	C1, C2	c3

Course Coordinator: Dr. Rafeek Wadieh



Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Computer Programming (ENG201)

1. Basic Information:

Program Title	All Programs		
Department Offering the Program	Communications and Electronics Engineering Program		
Department Responsible for the Course	Basic Science and Engineering Department		
Course Title	Computer Programming		
Course Code	ENG201		
Year/Level	Level 2		
Specialization	Major – Compulsory Course		
Authorization Date of Course Specification	-		
Pre- request	-		

Tooching hours	Lectures	Tutorial	Practical	
Teaching hours	2	-	2	

2. Course Aims:

No.	Aims
	Apply acquired knowledge in real-world situations by applying theories and abstract
1	thinking in analytic critical and systemic thinking to identify, diagnose, and solve
	engineering problems of varying complexity and variation.
	Communicate effectively with a variety of audiences using a variety of forms, methods, and
5	languages; cope with academic and professional issues in a critical and creative manner;
	and display leadership, business administration, and entrepreneurial abilities.

3. Competencies:

Competencies	Learning Outcomes (LO'S)			
	b3 Applying engineering basics that are relevant to			
C1 Identify, formulate, and solve complex	the computer programing (java)			
engineering problems by applying	c1 Solve engineering problems by applying			
engineering fundamentals, basic science,	engineering different algorithms.			
and mathematics.	c2 Identify complex engineering problems by			
	applying engineering fundamentals for solving.			
C2 Develop and conduct appropriate	a1 Describe an appropriate system by applying			
experimentation and/or simulation, analyze	"java "language programming.			
and interpret data, assess, and evaluate	b3 Interpret data problems to identify java			
findings, and use statistical analyses and	programs.			
objective engineering judgment to draw	c1 Choose relevant computer-based software for			
conclusions. modelling to analysis java programs				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Basic concepts of programming. Practical: problem analysis& developing the programs charts& Structured programming	2	ı	2
2	Introduction Java Applications Practical: Form of the Program& fundamentals of Java programming language and its syntax& Primitive data types, operators, variables & Joptionpane & scanner Classes.	4	-	4
3	Branching [Control Statements]. Practical: programs about (If statement, If -Else, Nested IF, Switch)	2	-	2
4	[Iterations] Control Statements. Practical: solved problems about (Repetition statements: for, while, do-while& Nested loop & Continue, Break.)	4	1	4
5	Concepts of object-Oriented programming Practical: Examples Of Classes, Inheritance Concept.	2	-	2
6	Methods in java. Practical: problems of (Declare method& Message passing& Method overloading)	2	1	2
7	Arrays and Array list Practical: Create Array& Matrix& Array List.	4	1	4
8	Introduction to java Applets. Practical: java Applets programs.	4	-	4
9	Graphical user interface (GUI). Practical: GUI exercises.	4	-	4
	Total	28	-	28

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	Fa ce to fa ce Le ct ur e	O nli ne Le ct ur e	Fli pp ed Cl as sr oo m	Pr es en tat io n an d m ov ies	Di sc us sio n	Pr ob le m sol vi ng	Br ai n st or mi ng	Pr oj ec ts	Sit e vis its	Se If-I ea rni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	la b
Basic concepts of programming. Practical: problem analysis& developing the programs charts& Structured programming	x	x			x	x								
Introduction Java Applications Practical: Form of the Program& fundamentals of Java programming language and its syntax& Primitive data types, operators, variables & Joptionpane & scanner Classes.	x	x			х	х								
Branching [Control Statements]. Practical: programs about (If statement, If -Else, Nested IF, Switch)	х	x			х	х								
[Iterations] Control Statements. Practical: solved problems about (Repetition statements: for, while, do-while& Nested loop &Continue, Break.)	х	х			х	х								

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Concepts of object-Oriented programming									
Practical: Examples of Classes, Inheritance Concept.	Х	Х		х	Х				
Methods in java. Practical: problems of (Declare method& Message passing& Method overloading)	x	x		х	х				
Arrays and Array list Practical: Create Array& Matrix& Array List.	х	х		х	x				
Introduction to java Applets. Practical: java Applets programs.	х	х		х	x				
Graphical user interface (GUI). Practical: GUI exercises.	х	х		х	x				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Web communication with students	Better communication with certain cases
	Asking small groups to do assignments; each	Knowledge and skills transfer among
3	composed of low, medium, and	different levels of students
	high-performance students.	

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1, C2	b3, c1
2	Semester work (report, quizzes)	C1, C2	c1, c2
3	Final term examination	C1, C2	a1, b3
4	Practical	C1, C2	c1, c2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	14 th
3	Final term examination	15 th

7.3 Weighting of Evaluation:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Evaluation Method	Weights
1	Mid-term examination	10%
2	final examination	60%
3	Practical examination	10%
4	Semester work	20%
	Total	100%

8. List of References:

No.	Reference List
1	Jeffrey L. Nyhoff, Larry R. Nyhoff "Processing: An Introduction to Programming" ebook
	(2017).
2	Usman Opeyemi Lateef, Akeem Owoade, Abimbola B.L. and Gbenga Ogunsanwo
	"introduction to computer programming" 2nd edition, College of Science, and Information
	Technology, (2016).

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Computer lab.
3	Presenter
4	White board
5	Data show system

10. Matrix of teaching and learning methods:

No	Topic	Aims	Competencies	LO's
1	Basic concepts of programming. Practical: problem analysis & developing the programs charts& Structured programming	1	C1	b3, c1
2	Introduction Java Applications Practical: Form of the Program& fundamentals of Java programming language and its syntax& Primitive data types, operators, variables & Joptionpane & scanner Classes.	1 1	C1	b3
3	Branching [Control Statements]. Practical: programs about (If statement, If -Else, Nested IF, Switch)	1	C1	b3
4	[Iterations] Control Statements. Practical: solved problems about (Repetition statements: for, while, do-while& Nested loop & Continue, Break.)	1	C1	c2
5	Concepts of object-Oriented programming Practical: Examples of Classes, Inheritance Concept.	1	C2	b3

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

				_
6	Methods in java. Practical: problems of (Declare method& Message passing& Method overloading)	1	C2	a1
7	Arrays and Array list Practical: Create Array& Matrix& Array List.	1	C2	c1
8	Introduction to java Applets. Practical: java Applets programs.	1	C1	b3
9	Graphical user interface (GUI). Practical: GUI exercises.	1	C2	a1, c1

Course Coordinator: Dr. Amira El Sonbaty

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Engineering Thermodynamics (ENG202)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Chemical Engineering Program
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Engineering Thermodynamics
Course Code	ENG202
Year/Level	level 2
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	ENG102

Tarabina haves	Lectures	Tutorial	Practical		
Teaching hours	2	2	-		

2. Course Aims:

No.	Aims
1	Master a broad range of engineering thermodynamics knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying thermodynamics laws to identify, diagnose, and solve engineering problems of varying complexity and variation.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a1 Demonstrate the thermodynamics laws that apply to the engineering problems. a2 Explain the basic principles of engineering thermodynamics. a3 Study the concepts and theories of mathematical, science necessary for engineering thermodynamic properties for different types of systems. b1 Select the appropriate solutions for engineering problems and system design, gas power cycles, vapor cycles. b2 Using scientific concepts and thermodynamics laws that are relevant to the real life. c1 Modify engineering knowledge and understanding to improve design, products and services, gas power cycles, vapor cycles.
	c2 Solve complex engineering problems by applying the concepts and the thermodynamics laws.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Fundamental concepts - Properties of a pure substance	2	2	ı
2	Equation of state - thermodynamic systems - Work and heat	2	2	-
3	First law of thermodynamics; Applications to Systems and Control Volumes	6	6	-
4	Second Law of Thermodynamics; Principle of Carnot cycles	4	4	-
5	Heat engines, Refrigerators, and heat pumps - Principle of the increase of entropy	4	4	1
6	Applications to systems and control volumes - Irreversibility and availability	6	6	-
7	Power and refrigeration cycles	4	4	-
	Total	28	28	-

5. Teaching and learning methods:

Topics	Fa ce fa ce ct ur e	Online Le cture	Fli pedClas sroom	Pr es e nt io n d m o vi es	Di sc us si o n	Pr o bl e m so lvi n g	Br ai n st or m in g	Pr oj ec ts	Si te vi sit s	Se If- le ar n g a n d R es ea rc h	C o o p er at iv e	Di sc o ve ri n g	M o d eli n g	la b
Fundamental concepts - Properties of a pure substance	x	x			х									

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Equation of state - thermodynamic systems - Work and heat	х	х		х	х				
First law of thermodynamics; Applications to Systems and Control Volumes	х	х		х	х				
Second Law of Thermodynamics ; Principle of Carnot cycles	х	x		X	X				
Heat engines, Refrigerators, and heat pumps - Principle of the increase of entropy	х	x		x					
Applications to systems and control volumes - Irreversibility and availability	х	х		х					
Power and refrigeration cycles	х	х		х					

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material.	Better access any time
2	Web communication with students.	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different levels of students

7. Student evaluation:

7.1 Student evaluation method:

No.	Evaluation Method	Competencies	LO's
-----	-------------------	--------------	------

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Midterm examination	C1	a1, a2, b1
2	Semester work (quizzes, sheets, report)	C1	c1, c2
3	Final term examination	C1	a3, b1, b2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	2 nd ,7 th ,9 th ,14 th
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	20%
2	final examination	60%
3	Semester work	20%
	Total	100%

8. List of References:

No.	Reference List
1	P. K. Nag "Engineering Thermodynamics 6th Edition" McGraw Hill Education; Sixth edition (2017).
2	Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey "Fundamentals of Engineering Thermodynamics" 9th edition Wiley (2018)

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Presenter
3	White board
4	Data show system

10. Matrix of Competencies and LO's:

No.	Торіс	Aims	Competencies	LO's
1	Fundamental concepts - Properties of a pure substance	1	C1	a1, a2
2	Equation of state - thermodynamic systems - Work and heat	1	C1	a1, a2
3	First law of thermodynamics; Applications to Systems and Control Volumes	1	C1	a1, a2, b2
4	Second Law of Thermodynamics; Principle of Carnot cycles	1	C1	b1, b2, c1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

5	Heat engines, Refrigerators, and heat pumps - Principle of the increase of entropy	1	C1	b1, c1
6	Applications to systems and control volumes - Irreversibility and availability	1	C1	a3, c2
7	Power and refrigeration cycles	1	C1	b1, c1

Course Coordinator: Prof. Dr Abd Elnaby Kabeel **Head of Department:** Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

<u>Technical English Language (2)</u> (LNG201)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Technical English Language (2)
Course Code	LNG201
Year/Level	Level 2
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	LNG101

To obline house	Lectures	Tutorial	Practical		
Teaching hours	1	-	2		

2. Course Aims:

No.	Aims
	Communicate effectively with a variety of audiences using a variety of forms, methods, and
5	languages; cope with academic and professional issues in a critical and creative manner;
	and display leadership, business administration, and entrepreneurial abilities.

3. Competencies:

Competencies	Learning Outcomes (LO'S)						
C5 Practice research techniques and methods of investigation as an inherent part of learning.	a1 Define technical language and report						
C8 Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	I d1 (ommunicate effectively						
C10 Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.	d1 Search for information to engage in lifelong self-learning discipline.d2 Professionally merge the language skills in self-learning						

4. Course Contents:

No	Content	Lecture	Tutorial	Practical
	Water			
1	Lab skills in English: Lesson 1 Bob drives a hard bargain&	2	-	4
	Lesson 2 Bob's big coolie order& grammar topics			

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Total	14	-	28
8	Automatic Control Lab Skills in English Grammar topics	1		2
7	Energy Lab Skills in English lesson 10 Bob gets any angry call from Carol & Grammar topics	2	-	4
6	Graphic language Lab skills in English: lesson 8 Everyone bakes cookies & lesson 9 Nicole's close election & grammar topics	2	-	4
5	Heat transfer Lab skills in English lesson 6 Bob brings the cookies to the village market& lesson 7 Carol tells Bob the good news& grammar topics	2	-	4
4	Human uses Lab skills in English: Grammar topics	2	-	4
3	Water cycle Lab skills in English lesson 5 Nicole practices her election speech& grammar topics	1	-	2
2	Chemical and physical properties. Lab skills in English Lesson 3 Amber comes over to bake cookies & Lesson 4Amber and Ted heat up the kitchen& grammar topics	2	-	4

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	F a c e t o f a c e L e c t u r e	OnlineLecture	F li p p e d C l a s s r o o m	P resentation and movies	D i s c u s s i o n	Problems olving	B rainstorming	P r o j e c t s	Sit e v i sit s	S e lf -l e a r n i n g a n d R e s e a r c h	C o o p e r a ti v e	Discovering	M o d e li n g	l a b
Water Lab skills in English: Lesson 1 Bob drives a hard bargain& Lesson 2 Bob's big coolie order& grammar topics	x	x			x	x								
Chemical and physical properties. Lab skills in English Lesson 3 Amber comes over to bake cookies & Lesson 4Amber and Ted heat up the kitchen& grammar topics	х	x			х	x								
Water cycle Lab skills in English lesson 5 Nicole practices her election speech& grammar topics	х	х			х	х								
Human uses Lab skills in English: Grammar topics	х	х			х	х								

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Heat transfer Lab skills in English lesson 6 Bob brings the cookies to the village market& lesson 7 Carol tells Bob the good news& grammar topics	x	x		x	x				
Graphic language Lab skills in English: lesson 8 Everyone bakes cookies & lesson 9 Nicole's close election & grammar topics	×	x		x	x				
Energy Lab Skills in English lesson 10 Bob gets any angry call from Carol & Grammar topics	х	х		х	х				
Automatic Control Lab Skills in English Grammar topics	х	x		x	x				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason					
1	Presentation of the course in digital material	Better access any time					
2	Asking small groups to do assignments; each composed						
-	of low, medium, and high-performance students.	among different level of student					

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C8, C10	d1, d2
2	Semester work (quizzes, sheets, report)	C8	d1, d2
3	Practical exam	C8, C10	d1, d2
4	Final term examination	C10	d1, d2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	7 th ,9 th
3	Practical examination	14 th
4	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	10%

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Semester work	20%
3	Practical examination	10%
4	Final term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	David Bonamy "Technical English" Longman Publishing Group 2016
	Paul J. Hamel "English for Better Jobs 1: Language for Working and Living" Create Space
	Independent Publishing Platform; 1st edition (2016)/
	Mahmood Reza Atai, Alireza Zaré Alanagh, Morteza Nasiri and Reza Taherkhani "English for
3	The Students of Engineering" 1st edition, SAMT Publication (2016).

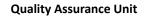
9. Facilities required for teaching and learning:

No.	Facility				
1	Lecture classroom	3	Seminar		
2	Computer lab.	4	White board	5	Data Show system

10. Matrix of Competencies and LO's:

No.	Торіс	Aims	Competencies	LO's
1	Water Lab skills in English: Lesson 1 Bob drives a hard bargain & Lesson 2 Bob's big coolie order & grammar topics	5	C8	d1, d2
2	Chemical and physical properties. Lab skills in English Lesson 3 Amber comes over to bake cookies & Lesson 4Amber and Ted heat up the kitchen & grammar topics	5	C8	d1, d2
3	Water cycle Lab skills in English lesson 5 Nicole practices her election speech & grammar topics	5	C8	d1, d2
4	Human uses Lab skills in English: Grammar topics	5	C10	d2
5	Heat transfer Lab skills in English lesson 6 Bob brings the cookies to the village market& lesson 7 Carol tells Bob the good news & grammar topics	5	C10	d2
6	Graphic language		C10	d2
7	Energy	5	C10	d1, d2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta


	Lab Skills in English lesson 10 Bob gets any angry call from Carol & Grammar topics			
8	Automatic Control Lab Skills in English Grammar topics	5	C10	d1, d2

Course Coordinator: Dr. Doaa Elshrbiny

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Mathematics (4) (MTH202)

1. Basic Information:

Program Title	All Programs			
Department Offering the Program	Basic Science and Engineering Department			
Department Responsible for the Course	Basic Science and Engineering Department			
Course Title	Mathematics (4)			
Course Code	MTH202			
Year/Level	Level 1			
Specialization	Major – Compulsory Course			
Authorization Date of Course Specification	-			
Pre- request	MTH101			

Teaching hours	Lectures	Exercise	laboratory	Student's load
reacting flours	2	2	-	5

2. Course Aims:

No.	Aims
1	Master a broad range of fundamental Mathematical engineering knowledge and specialized skills of Complex Analysis and Special functions, as well as the ability to apply acquired knowledge of Complex Analysis and Special functions in real-world situations as Heat equation and Wave equation by applying theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve mathematical engineering problems as by using complex series and Fourier series.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	 a1 Learn the general principles of differential equations and series and its applications in mathematical engineering. a2 Describe the effect of mathematical engineering principles and theories that apply in the most fundamental problems. a3 Define the basic concepts of series and analytic functions. b1 Use the basics of Complex Analysis and Special functions to solve engineering problems. c1 Apply the methods of solving partial differential equations to generate solutions for heating and wave equations.

4. Course Contents:

140: Topics Eceture Exercise laboratory Student road	No.	Topics	Lecture	Exercise	laboratory	Student load
--	-----	--------	---------	----------	------------	--------------

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Special functions	4	4	-	8
2	Fourier series	2	2	-	4
3	periodic functions and Euler's laws	4	4	-	8
4	Fourier's integrations – solutions of the differential	2	2	-	8
5	equations by series - solving the partial differential equations using variables separation	2	2	-	4
6	Functions with complex variables – complex quantities algebra	2	2	-	4
7	multiple values functions - the analytical functions and Koshi's theorem	2	2	-	8
8	the complex series	2	2	-	4
9	Taylor and Lorant series - the zeros, unique points, and the rest - the infinite series.	8	8	-	8
	Total	28	28	-	56

5. Teaching and learning methods:

No	Topics	Fac e-t o-F ac e Lec tur e	On lin e Lec tur e	Fli pp ed Cla ssr oo m	Pr es en tat ion an d mo vie s	Dis cus sio n	Pr obl em sol vin g	Br ain sto rm ing	Pr oje cts	Sit e visi ts	Sel f-le ar nin g an d Re se arc h	Co op era tiv e	Dis co ver ing	M od eli ng	lab
1	Special functions	х	х			х	х	х							
2	Fourier series	х	Х			х	х	Х							
3	periodic functions and Euler's laws	х	x			х	х	x							
4	Fourier's integrations – solutions of the differential	x	х			x	x	x							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

5	equations by series - solving the partial differential equations using variables separation	x	x		х	х	x				
6	Functions with complex variables – complex quantities algebra	x	x		x	x	x				
7	multiple values functions - the analytical functions and Koshi's theorem	x	x		х	x	x				
8	the complex series	х	х		х	х	x				
9	Taylor and Lorant series - the zeros, unique points and the rest - the infinite series.	x	x		х	x	x				

6. Teaching and learning methods for disabled students:

0	ching and rearring methods for disabled students:	
No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
-----	-------------------	--------------	------

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Periodic exams	C1	a1, a2, a3, b1
2	Semester work (quizzes, sheets, report)	C1	a1, c1
3	Final term examination	C1	b1, a3, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Periodic exams	8 th
2	Student load	2 nd -7 th -14 th
3	Final term examination	15 th

7.3 weighting of Evaluation:

No.	Evaluation Method	Marks
1	Periodic exams	30
2	Student load	30
3	Final term examination	90
	Total	150

8. List of References:

No.	Reference List
1	Brett Borden and James Luscombe "Fourier series and integrals" Morgan & Claypool
_	Publishers (2017).
2	Chris McMullen "Essential Calculus Skills Practice Workbook with Full Solutions" Zishka
	Publishing (2018).

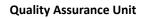
9. Facilities required for teaching and learning:

	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

10. Matrix of Competencies and LO's of the course:

No.	Topic	Aims	Competencies	LO's
1	Special functions	1	C1	a1, b1
2	Fourier series	1	C1	a1, a2
3	periodic functions and Euler's laws	1	C1	a3
4	Fourier's integrations – solutions of the differential	1	C1	c1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta


5	equations by series - solving the partial differential equations using variables separation	1	C1	c1
6	Functions with complex variables – complex quantities algebra	1	C1	b1
7	multiple values functions - the analytical functions and Koshi's theorem	1	C1	b1
8	- the complex series	1	C1	b1
9	Taylor and Lorant series - the zeros, unique points and the rest - the infinite series.	1	C1	a3

Course Coordinator: Dr. Samar Madian

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Surveying (1) (CIE203)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Surveying (1)
Course Code	CIE203
Year/Level	Level 2
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre-request	-

Teaching hours	Lectures	Tutorial	Practical		
	2	1	1		

2. Course Aims:

Ν	lo.	Aims									
	1	Applying theories and abstract thinking in analytic critical and systemic thinking to identify and solve engineering problems of varying complexity and variation.									
1	LO	Select appropriate and sustainable technologies for civil engineering fields such as surveying.									

3. Competencies:

Competencies	Learning Outcomes (LO'S)				
engineering problems by applying	a2 Explain the scientific principles and theories that apply to the topic.b1 Using math ideas and theories that are applicable to the field.				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C2 Develop and conduct appropriate simulation, analyze, and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	b1 Conduct basic experiments to learn about the basic characteristics and features of surveying
C11 Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.	 a1 Recognize the fundamentals of surveying, c1 Using either physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of surveying.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Introduction to Surveying: basic definitions, classification of maps and scales. Introduction to leveling. Types of levels Practical: Learn about levels devices	4	2	2
2	Mapping using linear measurements. Practical: measuring some buildings and details inside the institute using the tape	6	3	3
3	Levelling instruments, method of calculation, cross and longitudinal sections, contouring earth work Practical: Use level and take differential readings between points. Create longitudinal level	10	5	5
4	Compass surveying and traverse computation area determination Practical: Make a landline and calculate an area adjacent to it	4	2	2
5	Theodolite: temporary setting up, measuring of horizontal and vertical angles Practical: Identifying theodolite, methods of controlling it, and reading the vertical and horizontal angles	2	1	1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

6	Permanent adjustment of theodolite, errors in measuring horizontal and vertical angles Practical: Using theodolite as a model to identify permanent errors in theory	2	1	1
	Total	28	14	14

5. Teaching and learning methods:

5. Teaching and learning methods:	:													
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
Introduction to Surveying: basic definitions, classification of maps and scales. Introduction to leveling. Types of levels Practical: Learn about levels devices	x				х	х								х
Mapping using linear measurements. Practical: measuring some buildings and details inside the institute using the tape	x				x	x								x
Levelling instruments, method of calculation, cross and longitudinal sections, contouring earth work Practical: Use level and take differential readings between points. Create longitudinal level	x			х	х	х								х
Compass surveying and traverse computation area determination Practical: Make a landline and calculate an area adjacent to it	x				x	x								х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Theodolite: temporary setting up, measuring of horizontal and vertical angles Practical: Identifying theodolite, methods of controlling it, and reading the vertical and horizontal angles	x		x	x				x
Permanent adjustment of theodolite, errors in measuring horizontal and vertical angles Practical: Using theodolite as a model to identify permanent errors in theory	х		х	х				x

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low medium and high-performance students	Knowledge and skills transfer among different levels of students
4	Electronic model system for the Institution.	E. learning

7. Student evaluation:

7.1 Student evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1, C11	a2, a1
2	Semester work (quizzes, sheets, report)	C10	d1, d2
3	Practical examination	C1, C11	b1, c1
	Final tarm avamination	C1	a2, b1
	Final term examination	C11	a1, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester work	2 nd ,7 th , 9 th
2	Mid Term examination	8^{th}
3	Practical examination	14 th
4	Final term examination	15 th

7.3 Weighting of Evaluation:

	No.	Evaluation method	Weights
--	-----	-------------------	---------

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Mid-term examination	10%
2	Practical examination	10%
3	Semester work	20%
4	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	Walker, J., and Awange, J. L. (2020) Surveying for Civil and Mine Engineers.
	Recommended books
2	Wolf, P.R. and Brinker, R.C., Elementary Surveying, 10 th ed., Harper Collins College Publisher,
	NY, USA (2002)

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system
5	Lab

10. Matrix of knowledge and skills of the course:

No	Topic	Aims	Competencies	LO's
1	Introduction to Surveying: basic definitions, classification of maps and scales. Introduction to leveling. Types of levels Practical: Learn about levels devices	1, 10	C1 C11	a2, b1
2	Mapping using linear measurements. Practical: measuring some buildings and details inside the institute using the tape	1, 10	C1	a2
3	Levelling instruments, method of calculation, cross and longitudinal sections, contouring earth work Practical: Use level and take differential readings between points. Create longitudinal level	1,10	C11	a1
4	Compass surveying and traverse computation area determination Practical: Make a landline and calculate an area adjacent to it	1, 10	C1 C11	a2 a1
5	Theodolite: temporary setting up, measuring of horizontal and vertical angles	1, 10	C1 C11	b1 C1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Practical: Identifying theodolite, methods of controlling it, and reading the vertical and horizontal angles			
Permanent adjustment of theodolite, errors in measuring horizontal and vertical angles Practical: Using theodolite as a model to identify permanent errors in theory	1, 10	C1 C11	a2, b1 a1, C1

Course Coordinator: Dr. Ayman Helal

Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Structures Analysis (2) (CIE301)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Structures Analysis (2)
Course Code	CIE301
Year/Level	Level 3
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre-request	CIE202

Teaching hours	Lectures	Tutorial	Practical
	3	2	-

2. Course Aims:

No.	Aims											
1	Use	engineering	knowledge,	mathematics,	structural	engineering	concepts,	and				
	constructed structures to solve structural problems.											

3. Intended Learning Outcomes (LO'S):

Competencies	Learning Outcomes (LO'S)					
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	a1 Describe how to solve structure problems using relevant mathematical principles and					
	issues.					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

- **C2** Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.
- **C11** Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using either numerical technique and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.
- **a1** Define structural analysis and mechanics' basic characteristics, properties, concepts, and techniques.
- **a1** Recognize the fundamentals of structural analysis and mechanics, as well as material properties and strength.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Properties of plane sections	9	6	ı
2	Normal, shear and combined stresses	12	8	-
3	Elastic deformation of statically determinate structures	15	10	-
4	Analysis of statically indeterminate structures using the equation of three moments	6	4	1
	Total	42	28	-

5. Teaching and learning methods:

Topics	Fa ce to ce Le ct ur e	Online Le cture	Fli p p e d Cl as sr o o m	Present at ion and movies	Di sc us si o n	Pr obleem solvi ng	Br ai st or m in g	Pr oj ec ts	Si te vi si ts	Selfe and n g a n d R es e arch	C o p er at iv e	Di sc o ve ri n g	M o d el in g	la b
Properties of plane sections	х	х			х	х	х							
Normal, shear and combined stresses	х	х			х	х	х							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Elastic deformation of statically determinate structures		х		х	х	x				
Analysis of statically indeterminate structures using the equation of three moments	x	х		х	x	x				
Properties of plane sections	х	х		х	х	х				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different level of students.

7. Student evaluation:

7.1 Student evaluation method:

No.	Evaluation Method	od Competencies	
1	Mid Term Examination	C1	a1, a3
1		C2	a1
2	Semester work	C11	a1
		C1	a1, a3
3	Final Term Examination	C2	a1
		C11	a1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Mid Term Examination	8^{th}
2	Semester work	2 nd , 7 th , 9 th
3	Final Term Examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation method	Weights		
1	Mid-term examination	20%		
2	Semester work	20%		
3	Final-term examination	60%		
	Total 100%			

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

8. List of References:

No.	Reference List
1	Essential books (textbooks) W. M. El-dakhakhni, "Theory of Structures", Part One, Assiut University, 1973, 1974. W. M. El-dakhakhni, "Theory of Structures", Part Two, Assiut University, 1973, 1974. R. C. Coats, M. G. Coutie and F. K. Kong, "Structural Analysis", Second Edition, NCN 420-5870-1, ELBS-2007.
2	Recommended books Structural Analysis 2: Statically Indeterminate Structures, S. Khalfalla, September -2020. Structural Analysis, R. C. Hibbeler, 2018. Structural Analysis 2: Statically Indeterminate Structures, Salah Khalfallah · 2018

9. Facilities required for teaching and learning:

No.	Facility
1	Seminar
2	Discussions rooms with internet connections
3	Teaching aids such as interactive (smart) board
4	Data show

10. Matrix of knowledge and skills of the course:

	<u> </u>			
No.	Торіс	Aims	Competencies	LO's
1	Properties of plane sections	1	C1	a1, a3
2	Normal shear and combined stresses	1	C1	a1, a3
	Normal, shear and combined stresses		C2	a1
3	Elastic deformation of statically determinate structures	1	C11	a1
1	Analysis of statically indeterminate structures using the	1	C2	a1
4	equation of three moments		C11	a1

Course Coordinator: Dr. Rafeek Wadieh

Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Strength of Materials (ENG205)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Strength of Materials
Course Code	ENG205
Year/Level	Level 2
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	ENG101

Teaching hours	Lectures	Tutorial	Practical	
	2	2	-	

2. Course Aims:

No.	Aims
	Work in and manage a diverse team of professionals from various engineering disciplines,
2	taking responsibility for own and team performance; and behave professionally and adhere
	to engineering ethics and standards.
	Use the techniques, skills, and current engineering tools required for engineering practice
١ ,	of Statics applications by taking full responsibility for one's own learning and development,
3	participating in lifelong learning and consider the impact of statics study in real world, and
	its strong relation with environment and almost of all the technology fields upgrades.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a1 Define the concepts and theories of mathematics, necessary for engineering system analysis, general concepts of strength of material, normal stress, direct shear stress, Mohr's cycle. b1 Use math ideas and theories that are applicable to solutions for engineering problems and system design, normal stress, direct shear, stresses in beams, torsional stresses. c2 Practice the neatness and aesthetics in design to approach stresses in beams, torsional stresses, and pressure vessels. c3 Apply engineering knowledge and understanding to improve design, products and/or services, normal stress, direct shear stress, stresses in beams, torsional stresses, pressure vessels, Mohr's cycle.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Simple states of stress and strain	2	2	-
2	Tension and compression stress	4	4	-
3	3 Shear stress in bolts		4	-
4	4 Bending and shearing stresses in beams		4	-
5 Torsion stresses		2	2	-
6 Deflection of Beams		4	4	
7	Analysis of thin-walled pressure vessels	4	4	-
8	Analysis of plane stress	4	4	-
	Total	28	28	-

5. Teaching and learning methods:

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Simple states of stress and strain		x			x	х								х
Tension and compression stress		х			х	х								х
Shear stress in bolts		Х			Х	Х								х
Bending and shearing stresses in beams		х			х	х								х
Torsion stresses		Х			Х	Х								х
Deflection of Beams		Х			Х	Х								х

6. Teaching and learning methods for disabled students:

No	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments; each composed	Knowledge and skills transfer
	of low, medium, and high-performance students.	among different level of students.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7. Student evaluation:

7.1 Student evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Mid Term examination	C1	a1, b1
2	Semester work (quizzes, sheets, report)	C1	c2, c3
3	Final term examination	C1	a1, b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	semester work	2 nd , 7 th , 9 th
2	Mid Term examination	8^{th}
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference list
1	T. D. Gunneswara Rao and Mudimby Andal "Strength of Materials: Fundamentals and Applications" Cambridge University Press; 1st edition (2020).
2	Akira Todoroki "Fundamentals of Mechanics of Materials: Part 1 Stress, Strain, Torsion" 2017.

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

10. Matrix of Competencies and LO's:

No.	Торіс	Aims	Competencies	LO's
1	Simple states of stress and strain		C1	a1, b1
2	Tension and compression stress	2	C1	a1, b1
3	Shear stress in bolts	2	C1	a1, b1
4	Bending and shearing stresses in beams	2	C1	a1, b1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

5	Torsion stresses	2	C1	a1, b1
6	6 Deflection of Beams		C1	c3
7	Analysis of thin-walled pressure vessels	2	C1	c2, c3
8	Analysis of plane stress	2	C1	c2, c3

Course Coordinator: Prof. Dr. Abd Elnaby Kabeel **Head of Department:** Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Introductions to Information Technology (ENG206)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Communication and electronics Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Introductions to Information Technology
Course Code	ENG206
Year/Level	Level 2
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Tooching house	Lectures	Tutorial	Practical
Teaching hours	2	-	2

2. Course Aims:

	41007.111101
No.	Aims
7	Use the techniques, skills, and appropriate engineering tools, necessary for engineering practice web design project.

3. Competencies:

Competencies	Learning Outcomes (LO'S)						
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	 a2 List the engineering-related business and management principles, websites. a3 Define contemporary websites technologies and their applications in relation to engineering field. c3 Utilize modern technologies, programs, applications related by websites. 						
C8 Communicate effectively graphically, verbally, and in writing with a range of audiences using contemporary tools.	d1 Communicate effectively.d2 Demonstrate efficient IT capabilities.						

4. Course Contents:

No.			Lectures	Tutorial	Practical				
	Lecture:	Introduction	to	information	systems	&			
1	information	on technology					2	-	2
	Practical:	Introduction of	htm	I					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Lecture: information systems & information technology (Fields- Applications -Examples)	2	-	2
	Practical: html structure code	_		_
3	Lecture: Computer systems	2	_	2
	Practical: Font Tags			
4	Lecture: Hardware used in information systems	2	_	2
	Practical: Font Tags	_		
5	Lecture: Software used in information systems	2	-	2
	Practical: paragraph tags	_		_
6	Lecture: Introduction of data communication system	2	-	2
	Practical: order lists	_		
7	Lecture: Introduction of Computer Networking	2	_	2
	Practical: unorder lists	_		
	Lecture: The internet; the foundations, Resources, and			
8	uses of the internet,	4	-	4
	Practical: Image tag			
9	Lecture: Privacy Security and Ethics	2	_	2
	Practical: horizontal &vertical Rules			
	Lecture: Emphasizing practical skills for finding, Reading,			
10	and authorizing materials	2	-	2
	Practical: Frames			
11	Lecture: Introduction of Artificial Intelligence	2		2
	Practical: Tables		_	2
12	Lecture: introduction of cloud computing	2	_	2
14	Practical: Hyper Links		-	
13	Lecture: Html Projects	2	-	2
	Total	28	-	28

5. Teaching and learning methods:

Face -to-Face Lecture Online Lecture Flipped Classroom Presentation and movies Discussion Problem solving Projects Site visits Site visits Site visits Site visits Discovering	Modeling	
--	----------	--

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

			 				 		-	
Lecture: Introduction to information systems & information technology Practical: Introduction of html		х		х	х					x
Lecture: information systems & information technology (Fields- Applications -Examples) Practical: html structure code		x		x	х					х
Lecture: Computer systems Practical: Font Tags		х		х	х					х
Lecture: Hardware used in information systems Practical: Font Tags		x		х	х					х
Lecture: Software used in information systems Practical: paragraph tags		х		х	х					х
Lecture: Introduction of data communication system Practical: order lists		х		х	х					х
Lecture: Introduction of Computer Networking Practical: unorder lists		х		х	х					х
Lecture: The internet; the foundations, Resources, and uses of the internet, Practical: Image tag		х		х	х					x
Lecture: Privacy Security and Ethics Practical: horizontal &vertical Rules	х		х	x					х	х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Lecture: Emphasizing practical skills for finding, Reading, and authorizing materials Practical: Frames	х		х	х				х	х
Lecture: Introduction of Artificial Intelligence Practical: Tables	x		x	х				х	x
Lecture: introduction of cloud computing Practical: Hyper Links	х		х	х				х	х
Lecture: Html Projects	Х		Х	х			·	Х	х

6. Teaching and learning methods for disabled students:

	mg and rearring meaneds for alloadrea statements.	
No.	Teaching Methods	Reason
1	Provide regular quality feedback.	Better access any time
2	Use Direct Instruction.	Better access any time
3	Break learning tasks into small steps.	
4	Moodle	Better communication with certain cases
5	Forming small groups of two or three students within the class grouped according to their level can help with personalizing the teaching while not sacrificing class instruction time	Knowledge and skills transfer among different levels of students

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C4	a2, a3
2	Semester work (quizzes, sheets, report)	C8	d1, d2
3	Practical Examination	C4	c3
4	Final term examination	C4	a2, a3, c3

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	2 nd ,7 th ,9 th ,13 th
3	Practical Examination	14 th
4	Final term examination	15 th

7.3 Weighting of Evaluation:

	-0 - 0	
No.	Evaluation Method	Weights

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Mid-term examination	20%
2	final examination	50%
3	Practical examination	10%
4	Semester work	20%
	Total	100%

8. List of References:

No.	Reference List
1	INFORMATION TECHNOLOGY : THEORY AND PRACTICE SINHA, PRADEEP K. SINHA,
	PRITII,2018
2	INFORMATION TECHNOLOGY LAW, IAN J. LLOYD ·,2020

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Presenter
3	Computer lab.
4	White board
5	Data show system
6	Wireless internet
7	Sound system
8	Moodle

10. Matrix of Competencies and LO's:

No.	Торіс	Aims	Competencies	LO's
1	Lecture: Introduction to information systems & information technology Practical: Introduction of html	7	C4	a2, a3
2	Lecture: information systems & information technology (Fields- Applications -Examples) Practical: html structure code	7	C4	a2, a3, c3
3	Lecture: Computer systems Practical: Font Tags	7	C4 C8	a2 d2
4	 technology (Fields- Applications -Examples) Practical: html structure code Lecture: Computer systems Practical: Font Tags 		C4 C8	a3 d2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

5	Lecture: Software used in information systems Practical: paragraph tags	7	C4 C8	c3 d2
6	Lecture: Introduction of data communication system Practical: order lists	7	C4	c3
7	Lecture: Introduction of Computer Networking Practical: unorder lists	7	C4	a2
8	Lecture: The internet; the foundations, Resources, and uses of the internet, Practical: Image tag	7	C4	a2
9	Lecture: Privacy Security and Ethics Practical: horizontal &vertical Rules	7	C4 C8	c3 d2
10	Lecture: Emphasizing practical skills for finding, Reading, and authorizing materials Practical: Frames	7	C4 C8	c3 d2
11	Lecture: Introduction of Artificial Intelligence Practical: Tables	7	C4	c3
12	Lecture: introduction of cloud computing Practical: Hyper Links	7	C4 C8	c3 d1
13	Lecture: Html Projects	7	C8	d1, d2

Course Coordinator: Dr. Amira Elsonbaty

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Electrical Engineering Fundamentals (ENG208)

1. Basic Information:

Program Title	All Programs								
Department Offering the Program	Communication and Electronics Engineering Department								
Department Responsible for the Course	Basic Science and Engineering Department								
Course Title	Electrical Engineering Fundamentals								
Course Code	ENG208								
Year/Level	Level 2								
Specialization	Major – Compulsory Course								
Authorization Date of Course Specification	-								
Pre- request	-								

Too shing house	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims:

No.	Aims
2	Apply analytic critical and systemic thinking to discover, analyze, and solve a wide range of electrical engineering problems;
7	Proper utilization of modern electrical engineering techniques, skills, and tools

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a1 Identify the mathematical principles and theories that are relevant to the electrical circuit. c1 Solve engineering problems by applying mathematics and science concepts and theories appropriate to the discipline to identify, formulate and solve complex electrical engineering problems. c2 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals electrical
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical	b3 Analyze and interpret data.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

analyses	and	objective	engineering
judgment	to co	nclude.	

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Direct Current	2	2	-
2	Theory of electric circuits	6	6	-
3	Delta and Star connections	1	1	-
4	Sine A.C and D.C circuits	5	5	-
5	Time vectors diagram	2	2	-
6	Electric power and power factor in A.C circuits	2	2	-
7	3-Phase current - Electric machines - D.C machines	4	4	-
8	Transformers	2	2	-
9	Induction and synchronous machines	2	2	-
10	Fractional power machine	2	2	-
	Total	42	28	-

5. Teaching and learning methods:

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Direct Current		х			х	х								х
Theory of electric circuits		х			х	х								х
Delta and Star connections		х			х	х								х
Sine A.C and D.C circuits		х			х	х								х
Time vectors diagram		х			х	х								х
Electric power and power factor in A.C circuits		х			х	х								х
3-Phase current - Electric machines - D.C machines		х			х	х								х
Transformers		х			х	х								х
Induction and synchronous machines		х			x	х								х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

			_	_					
Fractional	power	>			V				
machine		X		^	^				^

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Web communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different levels of students

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's	
1	Midterm examination	C1	a1, c1, c2	
	whaterm examination	C2	b3	
2	Semester work (quizzes, sheets, report)	C2	b3	
3	Final term examination	C2	b3	

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	2 nd ,7 th ,9 th ,14 th
3	Final term examination	15 th

7.3 Weighting of Evaluation:

7.0 176.8.11.18 01 214.144.10111			
No.	Evaluation Method	Weights	
1	Mid-term examination	20%	
2	Semester work	20%	
3	final examination	60%	
	Total	100%	

8. List of References:

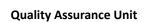
No.	Reference List
1	Fundamentals of electric circuits alexander sadiku 4th edition.2019.
2	Fundamentals of Electrical Circuit Analysis, March 2018

9. Facilities required for teaching and learning:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Facility
1	Lecture classroom
2	Presenter
3	White board
4	Data show system
5	Wireless internet
6	Sound system

10. Matrix of Competencies and LO's:


No.	Topic	LO's		
INO.	ισρις	Aims	Competencies	LUS
1	Direct Current	2	C1	a1
			C2	b3
2	Theory of electric circuits	2	C1	a1, c1
			C2	b3
3	Delta and Star connections	7	C1	c1
	Sine A.C and D.C circuits	7	C1	c2
4			C2	b3
5	Time vectors diagram	7	C1	c1
6	Electric power and power factor in A.C circuits	7	C1	c1
6			C2	b3
_	2 Phase surrent Flastric machines D.C. machines	7	C1	a1, c2
7	3-Phase current - Electric machines - D.C machines	7	C2	b3
8	Transformers	7	C1	c1
	Induction and synchronous machines	7	C1	a1, c1
9		,	C2	b3
10	Fractional power machine	7	C1	a1, c1

Course Coordinator: Dr. Rabab Reda

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Engineering Probability and Statistics (MTH301)

1. Basic Information:

Program Title	All Programs		
Department Offering the Program	Basic Science and Engineering Department		
Department Responsible for the Course	Basic Science and Engineering Department		
Course Title	Engineering Probability and Statistics		
Course Code	MTH301		
Year/Level	Level 3		
Specialization	Major – Compulsory Course		
Authorization Date of Course Specification	-		
Pre- request	-		

Tarabina havva	Lectures	Tutorial	Practical	
Teaching hours	2	2	-	

2. Course Aims:

No.	Aims		
1	The ability to apply probability theories and hypothesis testing in analytic critical and		
	systemic thinking to solve engineering problems of varying complexity and variation.		
6	Analyze data from the intended tests to manage resources creatively		

3. Competencies:

Competencies	Learning Outcomes (LO'S)		
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a1 Describe the relevant mathematical principles and theories in the discipline. a2 Explain the scientific principles and theories that apply to the topic. b1 Use math ideas and theories that are applicable to the field. b3 Applying engineering basics that are relevant to the subject. c2 Identify, formulate, and solve complex engineering problems by applying the concepts and the theories of sciences, appropriate to the discipline. 		

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Probability theory	4	4	-
2	Discrete and continuous probability distributions	6	6	-
3	Statistics in engineering	4	4	-

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4	Descriptive Statistics Sampling distributions		2	-
5	5 Estimation and confidence intervals		4	-
6	6 Hypothesis testing		4	-
7	7 Simple regression		4	-
	Total		28	

5. Teaching and learning methods:

5. leaching and learning	metii	ous.												
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Probability theory		Х			х	Х								Х
Discrete and continuous probability distributions		x			х	x								x
Statistics in engineering		Х			х	Х								Х
Descriptive Statistics Sampling distributions		х			х	х								х
Estimation and confidence intervals		x			x	x								х
Hypothesis testing		х			х	х								х
Simple regression		х			х	х								х

6. Teaching and learning methods for disabled students:

	and rearring mean and an another state of the			
No.	Teaching Methods	Reason		
1	Presentation of the course in digital material	Better access any time		
2	Wed communication with students	Better communication with certain cases		
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students		

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1	a1, a2, b3
2	Semester work (quizzes, sheets, report)	C1	a1, c2
3	Final term examination	C1	a2, b1, b3

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	2 nd -7 th - 9 th -14 th
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	E. Kreyszig "Advanced Engineering Mathematics" 11th edition, John Wiley and Sons, Inc.
1	2009
	Andrew Metcalfe, <u>David Green</u> , <u>Tony Greenfield</u> , <u>Mayhayaudin Mansor</u> , <u>Andrew Smith</u> ,
2	<u>Ionathan Tuke</u> " Statistics in Engineering
	With Examples in MATLAB" 2 nd Edition, Chapman and Hall/CRC (2019).

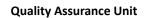
9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Presenter
3	White board
4	Data show system
5	Sound system

10. Matrix of Competencies and LO's:

No.	Торіс	Aims	Competencies	LO's
1	Probability theory	1	C1	a1
2	Discrete and continuous probability distributions	6	C1	a2
3	Statistics in engineering	1	C1	b3

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta


4	Descriptive Statistics Sampling distributions	1	C1	b1
5	5 Estimation and confidence intervals		C1	c2
6	Hypothesis testing	6	C1	c2
7	Simple regression	6	C1	c2

Course Coordinator: Dr. Samar Madian

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

<u>Properties and Strength of Materials</u> (CIE302)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Properties and Strength of Materials
Course Code	CIE302
Year/Level	Level 3
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre-request	-

Tanahina harre	Lectures	Tutorial	Practical
Teaching hours	2	1	1

2. Course Aims

No.	Aims
8	Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures, using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as properties and strength of materials
10	Use the techniques, skills, and current engineering tools required for engineering practice.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	b2 Using scientific concepts
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	 a2 Define the principles, basic properties, and features of construction material, as well as their use in sustainable technologies for construction of buildings. b1 Conduct basic experiments to learn about the basic characteristics and features of materials. b3 Interpret data problems to identify java programs

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

- **C4** Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles
- **a1** Describe codes of practice, and standards, as well as health and safety regulations.
- **C11** Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of: Properties and strength of materials.
- **a3** Define contemporary engineering technologies and their applications in relation to disciplines.
- a1 Recognize the fundamentals of properties and strength of materials,a2 Summarize, appropriate and sustainable technologies for construction of buildings.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Introduction to properties and strength of materials, properties and grading of aggregates (fine – coarse) Practical: Sieve analysis – adsorption – specific gravity – specific volume – fineness modulus	4	4	6
2	Manufacture and types of cement Practical: fineness modulus of cement –compression strength – initial and final setting time	4	-	2
3	Concrete manufacture Practical: slump test – compacting factor test – air content in fresh concrete – compression strength – steel tensile strength	4	-	2
4	Concrete workability	2	6	-
5	Concrete strength in tension, compression, and flexure – concrete durability	4	-	-
6	Concrete mix design	6	8	=
7	Building materials (steel, wood, brick, lime, gypsum, stones, bitumen)	2	-	-
	Total	28	10	18

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Introduction to properties and strength of materials, properties and grading of aggregates (fine – coarse) Practical: Sieve analysis – adsorption – specific gravity – specific volume – fineness modulus	V			√	√	√							$\sqrt{}$	V
Manufacture and types of cement Practical: fineness modulus of cement –compression strength – initial and final setting time	√			√	√	√							√	V
Concrete manufacture Practical: slump test — compacting factor test — air content in fresh concrete — compression strength — steel tensile strength	V			\checkmark	V	√		\checkmark					V	√
Concrete workability	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$							$\sqrt{}$	$\sqrt{}$
Concrete strength in tension, compression, and flexure – concrete durability	V				V	V								√
Concrete mix design						$\sqrt{}$								$\sqrt{}$
Building materials (steel, wood, brick, lime, gypsum, stones, bitumen)	√				√	√		$\sqrt{}$						$\sqrt{}$

6. Teaching and learning methods for disabled students:

No. Teaching Methods Reason

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students
4	Electronic model system for the Institution.	E. learning

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
		C2	b3, a2
1	Midterm examination	C4	a1, a3
		C11	a1, a2
,	Semester work (quizzes, sheets, report)	C4	a1, a3
	Semester work (quizzes, sheets, report)	C11	a1, a2
		C1	b2
3	Final term examination	C2	a2, b1, b3
		C4	a1, a3

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	semester work	all
2	Mid Term examination	8^{th}
3	Practical Examination	14 th
4	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	10%
2	Semester work	20%
3	Practical Examination	10%
4	Final-term examination	60%
	Total 100%	

8. List of References:

No.	Reference List
	Course notes
1	Egyptian Code for design and construction of reinforced concrete structures – Appendix
	No.3: Guide for laboratory testing of concrete materials.
	الكود المصري لتصميم وتنفيذ المنشآت الخرسانية ، دليل الإختبارات المعملية للخرسانة ، وزارة الإسكان والمرفق
	والمجتمعات العمرانية ، كود رقم (203) اصدار 2018
	Lecture Notes, Staff of Properties and Testing of Materials

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Egyptian standard specifications, Ministry of Industrial, Latest Version.			
	Recommended books			
	Prasad, I., "A Textbook of Strength of Materials" Delhi Khanna ,2002			
	Komar, A., "Building Materials and Components", Moscow Mir ,2005			
2	Printice Hall, New Jersey, 2008.			
	Abdul-Rahman, Ali, "Fundamentals of Reinforced Concrete," Faculty of Engineering, Cairo			
	University.			
	Hilal, M., Theory and Design of Reinforced Concrete Tanks.			

9. Facilities required for teaching and learning:

	Facility				
1	Lecture classroom	3	White board		
2	Seminar	4	Data show system		
5	Lab.				

10. Matrix of knowledge and skills of the course:

No	Торіс		Competencies	LO's
1	Introduction to properties and strength of materials, properties and grading of aggregates (fine – coarse) Practical: Sieve analysis – adsorption – specific gravity – specific volume – fineness modulus	10	C1 C4 C11	b2 a3, a1 a1, a2
2	Manufacture and types of cement Practical: fineness modulus of cement –compression strength – initial and final setting time	10	C4 C11	a1, a3 a1, a2
3	Concrete manufacture Practical: slump test – compacting factor test – air content in fresh concrete – compression strength – steel tensile strength	8, 10	C1 C4 C11	b2 a3, a1 a1, a2
4	Concrete workability	8, 10	C1 C4 C11	b2 a3, a1 a1, a2
5	Concrete strength in tension, compression and flexure – concrete durability	8, 10	C1 C4 C11	b2 a3, a1 a1, a2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

6	Concrete mix design	8, 10	C1 C4 C11	b2 a3, a1 a1,
				a2 b2
7	Building materials (steel, wood, brick, lime, gypsum, stones,	8, 10	C1 C4	a3, a1
	bitumen)		C11	a1,
				a2

Course Coordinator: Dr. Nesreen Elawadly **Head of Department:** Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Principles of Building Construction (CIE303)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Principles of Building Construction
Course Code	CIE303
Year/Level	Level 3
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre-request	-

Teaching hours	Lectures	Tutorial	Practical
	2	2	-

2. Course Aims

No.	Aims					
6	Analyze data from the intended tests to manage resources creatively					
10	Select appropriate and sustainable technologies for construction of buildings and					
10	infrastructures					

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C2 Develop and conduct appr	propriate a2 Define the principles, basic properties,
experimentation and/or simulation, analy	yze and and features of construction material, as well
interpret data, assess, and evaluate finding	ngs, and as their use in sustainable technologies for
use statistical analyses and objective	construction of buildings, infrastructures,
engineering judgment to draw conclusions	and water structures.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

- C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles

 C11 Select appropriate and sustainable
- **a1** Describe codes of practice, and standards, as well as health and safety regulations.
 - **a2** List the engineering-related economy.
 - **a3** Define contemporary engineering technologies and their applications in relation to disciplines.
- C11 Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures, using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of properties and strength of materials
- **a2** Summarize, appropriate and sustainable technologies for construction of buildings,

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Construction technology of different types of projects	2	2	-
2	Conventional construction methods	2	2	-
3	Construction Equipment	2	2	-
4	Prefabricated construction methods	2	2	-
5	Effect of environment on methods of construction	2	2	-
6	Architectural principals (utilities – services – properties)	2	2	-
7	Safety issues during different stages of construction	2	2	-
8	Examples of construction of different types of projects (buildings, roads, RCC dams, marine works, underground structures, etc.)	4	4	-
9	Building materials technology (steel, concrete, wood and natural stones)	2	2	-
10	Developing new materials (Fiber reinforced polymers, high strength concrete and ultra-high strength concrete)	4	4	-
11	Architectural drawings and details	4	4	-
	Total	2 8	28	-

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Construction technology of different types of projects	х				х	х								
Conventional construction methods	х				х	Х								
Construction Equipment	х				х	х								
Prefabricated construction methods	х				х	х								
Effect of environment on methods of construction	х				х	х								
Architectural principals (utilities – services – properties)	х				x	х								
Safety issues during different stages of construction	х				x	х								
Examples of construction of different types of projects (buildings, roads, RCC dams, marine works, underground structures, etc.)	х				х	х								
Building materials technology (steel, concrete, wood, and natural stones)	х				х	х	х						х	
Developing new materials (Fiber reinforced polymers, high strength concrete and ultra-high strength concrete)	х				х	х								
Architectural drawings and details	Х				Х	х								

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3	Asking small groups to do assignments; composed of low, medium, high-performance students	each and	Knowledge and skills transfer among different levels of students
4	Electronic model system for the Institution.	E. learning	

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C2	a2
	whaterm examination	C4	a3
2	Competer work (quizzes shoots report)	C4	a1
	Semester work (quizzes, sheets, report)	C11	a2
3	Final term examination	C4	a1, a3
		C11	a2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	7 th - 9 th
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights		
1	Midterm examination	20%		
2	Semester work	20%		
3	Final term examination	60%		
	Total 100%			

8. List of References:

No.	Reference List					
	Course notes:					
1	Are delivered during the lecture, including handout materials such as solved problems,					
	design charts, tables, etc.					
,	Essential books (textbooks / design codes):					
2	Egyptian Code for Design and Construction of Reinforced Concrete Structures 203-2018.					
	Design Aids and Examples in Accordance with the Egyptian Code for Design and					
	Construction of Reinforced Concrete Structures 203-2018.					
	Recommended books:					
	Chu-Kia Wang and Charles G. Salmon, "Reinforced Concrete Design," 4th Edition, Harper					
3	and Row Publishers, New York, 1985.					
	MacGregor J., "Reinforced Concrete: Mechanics and Design," Printice Hall, New Jersey,					
	1988.					

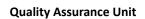
Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Abdul-Rahman, Ali, "Fundamentals of Reinforced Concrete," Faculty of Engineering, Cairo University.

Hilal, M., Theory and Design of Reinforced Concrete Tanks.

9. Facilities required for teaching and learning:

	Facility					
1	Lecture classroom	3	White board			
2	Seminar	4	Data show system			
		5	Gallery			


10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Construction technology of different types of projects	4,10	C4	a3, a1
2	Conventional construction methods	4,10	C4	a3
	Conventional construction methods		C11	a1, a2
3	Construction Equipment	4,10	C4	a3
	Construction Equipment	4,10	C11	a1, a2
4	Prefabricated construction methods	4,10	C4	a3
	Tretabilitated construction methods	4,10	C11	a1, a2
5	Effect of environment on methods of construction	4,10	C4	a3
	Effect of Chylloninent on methods of construction	4,10	C11	a1, a2
6	Architectural principals (utilities – services – properties)	4,10	C4	a3
	Architectural principals (utilities – services – properties)		C11	a1, a2
7	Safety issues during different stages of construction	4,10	C4	a3
<u> </u>	Jaicty issues daring different stages of construction	4,10	C11	a1, a2
	Examples of construction of different types of projects		C4	a3
8	(buildings, roads, RCC dams, marine works, underground	4,10	C11	a1, a2
	structures, etc.)		C11	u1, u2
9	Building materials technology (steel, concrete, wood, and	4,10	C4	a3
	natural stones)	7,10	C11	a1, a2
10	Developing new materials (Fiber reinforced polymers,	4,10	C4	a3
	high strength concrete and ultra-high strength concrete)	4,10	C11	a1, a2

Course Coordinator: Dr. Ayman Helal

Head of Department: Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Structures Analysis (3) (CIE304)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Structures Analysis (3)
Course Code	CIE 301
Year/Level	Level 3
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	CIE202

Too shing house	Lectures	Tutorial	Practical
Teaching hours	2	2	_

2. Course Aims

No.	Aims
10	Select the appropriate and sustainable technologies for construction of buildings using numerical techniques by applying a full range of civil engineering fields such as structural analysis.

3. Competencies:

5. Competences.					
Competencies	Learning Outcomes (LO'S)				
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and	b3 Applying engineering basics that are relevant to the structural analysis.				
mathematics.	c2 Practice the neatness and aesthetics in design to approach stresses in beams, torsional stresses,				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	c3 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals.
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	 a1 Define, basic characteristics, properties, concepts, and techniques of structural analysis and mechanics. c3 Applying statistical analyses and objective engineering judgment to draw conclusions.
C11 Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.	a1 Recognize the fundamentals of structural analysis and mechanics. c1 Using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Statically indeterminate structures using force method	6	6	-
2	slope deflection method	8	8	-
3	Moment distribution method	10	10	-
4	Introduction to stiffness method	4	4	-
	Total	28	28	-

5. Teaching and learning methods:

J. Teaching and Tearning														
Topics	Face to fac e Lec tur e	Onli ne Lec tur e	Flipp ed Cla ssr oo m	Pres en tat ion an d m ovi es	Disc uss ion	Prob le m sol vin g	Brai n sto rm ing	Proj ect s	Site vis its	Self- lea rni ng an d Re se arc h	Coo pe rat ive	Disc ov eri ng	Mod eli ng	lab
Statically indeterminate	х	х			х	х	х							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

structures using force method										
slope deflection method	х	x		х	x	x				
Moment distribution method	x	x		x	x	X				
Introduction to stiffness method	х	х		х	х	x				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different level of students.

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midtorm evanination	C1	a3, c3
	Midterm examination	C11	c1
	Consistency would be size of a size	C1	a3, c3
2	Semester work (quizzes, sheets, report)	C11	c1
		C1	a3, b3, c3
3	Final term examination	C2	a3, b3, c3 a1, c3
		C11	a1, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Mid Term Examination	8^{th}
2	Semester work	2 nd , 7 th , 9 th
3	Final Term Examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

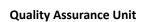
No.	Reference List
-----	----------------

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Essential books (textbooks)
1	W. M. El-dakhakhni, "Theory of Structures", Part One, AssiutUniversity, 2016.
1	W. M. El-dakhakhni, "Theory of Structures", Part Two, AssiutUniversity, 2016.
	El-Sayed El-Kasaby & Fayez Kaiser, "Theory of Structures-Solved examples", Part 1, 2018.
	Recommended books
,	Structural Analysis, R. C. Hibbeler, 2022.
2	Structural Analysis 1: Statically Determinate Structures, S. Khalfalla, September -2018
	Structural Analysis, R. C. Hibbeler, 2018

9. Facilities required for teaching and learning:

	Facility								
1	Seminar	3	Teaching aids as interactive (smart) board						
2	Discussions rooms with internet connections	4	Data show						


10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Statically indeterminate structures using force method	1, 10	C1	a3
2	slope deflection method	1, 10	C1	c3
3	Moment distribution method	1, 10	C1, C2, C11	a1, c3
4	Introduction to stiffness method	1, 10	C1, C2, C11	a1, c3

Course Coordinator: Dr. Rafeek Wadieh

Head of Department: Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Fluid Mechanics (ENG301)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Fluid Mechanics
Course Code	ENG301
Year/Level	Level 2
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	ENG 102

Tanahina hayus	Lectures	Tutorial	Practical		
Teaching hours	2	1	1		

2. Course Aims:

No.	Aims
1	Master a broad range of Fluid Mechanics knowledge and specialized skills, as well as the ability to understand and apply physical concept knowledge in real-world situations by applying fluid mechanics basic theories. Also, to Apply knowledge of science and engineering concepts to study fluid properties, fluid statics and fluid dynamics and to abstract course knowledge that give him or her, the ability to think, identify, diagnose, and solve engineering problems of varying complexity and variation in real world as an engineer.
4	Use the techniques, skills, and current engineering tools required for engineering practice of fluid mechanics by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.
8	Consider the impact of fluid mechanics study in real world, and its strong relation with environment and almost of all the technology fields upgrades.

3. Competencies

Compe	etencies	Learning Outcomes (LO'S)				
C1 Identify, form	nulate, and solve	a1 Define concepts of energy, momentum equations and				
complex enginee	ering problems by	dimensional analysis (laminar and turbulent flow).				
applying	engineering	a2 Explain the basic principles of fluid mechanics engineering				
fundamentals, b	pasic science and	b1 Analyze various ideas and views for different forces on				
mathematics.		immersed bodies.				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	b2 Using scientific concepts and theories that are relevant to the fluid mechanics.b3 Applying engineering basics that are relevant to the subject.
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	·

4. Course Contents:

No.	Topics	Lecture	Exercise	laboratory	Student load
1	Fluid properties, fluid statics, kinematics	2	1	1	4
2	Fluid dynamics including energy and Momentum equations	4	2	2	8
3	Dimensional analysis, Laminar flow, turbulent flow and its applications	2	1	1	4
4	Forces on immersed bodies, Introduction to compressible flow	4	2	2	8
5	Applications to filtration and fluidization	2	1	1	4
6	Friction losses in pipes.	4	2	2	8
7	Laboratory course in Fluid Mechanics includes experiments on venture-meter, friction losses in pipes	4	2	2	4
8	Center of pressure, Flow measuring apparatus, multi-pump test (Pump characteristics) and losses in piping systems	6	3	3	4
	Total	28	28	14	

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Fluid properties, fluid statics, kinematics		х			х	x								х
Fluid dynamics including energy and Momentum equations		х			х	х								х
Dimensional analysis, Laminar flow, turbulent flow, and its applications		x			х	х								х
Forces on immersed bodies, Introduction to compressible flow		x			x	x								х
Applications to filtration and fluidization		х			х	х								х
Laboratory course in Fluid Mechanics includes experiments on venture-meter, friction losses in pipes		х			х	х								х
Center of pressure, Flow measuring apparatus, multi-pump test (Pump characteristics) and losses in piping systems		x			x	x								х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Web communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different levels of students

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1	a1, a2, b1, b2, b3
2	Semester work (quizzes, sheets, report)	C1, C2	a1, b2
3	Final term examination	C1, C2	a1, a2, b1, b2, b3

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks	
1	Midterm examination	8 th	
2	Semester work	2 nd ,7 th ,9 th ,14 th	
3	Final term examination	15 th	

7.3 Weighting of Evaluation:

No.	Evaluation method	Weights		
1	Mid-term examination	10%		
2	final examination	60%		
3	Practical examination	10%		
4	Semester work	20%		
	Total 100%			

8. List of References:

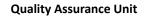
No.	Reference List
1	Gerhart, Philip M., Andrew L. Gerhart, and John I. Hochstein. Munson, Young and Okiishi's
	Gerhart, Philip M., Andrew L. Gerhart, and John I. Hochstein. Munson, Young and Okiishi's Fundamentals of Fluid Mechanics. John Wiley & Sons, 2016.
	Schetz, J. A., & Fuhs, A. E. (Eds.). (2011). Fundamentals of fluid mechanics. John Wiley &
2	Sons.
	Young, D. F., Munson, B. R., Okiishi, T. H., & Huebsch, W. W. (2010). A brief introduction to
3	fluid mechanics. John Wiley & Sons.

9. Facilities required for teaching and learning:

_	7. Tuenties required for teaching and rearming.		
	Facility		
1	Lecture classroom		
2	Seminar		
3	Computer lab.		
4	White board		
5	Data Show system		

10. Matrix of Competencies and LO's:

No.	Topic	Aims	Competencies	LO's
1	Fluid properties, fluid statics, kinematics	1	C1	a1, a2



Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Fluid Dynamics including Energy and Momentum equations	1	C1	a1
3	Dimensional analysis, laminar flow, turbulent flow, and its applications	1	C1	a1
4	forces on immersed bodies, introduction to		C1	b1
5	Applications to filtration and fluidization		C1	b2, b3
6	Laboratory course in Fluid Mechanics includes experiments on venture-meter, friction losses in pipes		C2	a2
7	Center of pressure, flow measuring apparatus, multi-pump test (Pump characteristics) and losses in piping systems	4, 8	C2	a1, b1

Course Coordinator: Assoc. Prof. Dr. Mohamed Gabr **Head of Department:** Assoc. Prof. Dr. Amal Bahiry

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Engineering Economy (ENG303)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Engineering Economy
Course Code	ENG303
Year/Level	Level 3
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre-request	-

Teaching hours	Lectures	Tutorial	Practical
	2	1	-

2. Course Aims:

No.	Aims
2	Work in and manage a diverse team of professionals from various engineering disciplines, taking responsibility for own and team performance; and behave professionally and adhere to engineering ethics and standards.
10	Demonstrate leadership qualities, business management, and skill development.

3. Competencies:

Competencies	Learning Outcomes (LO'S)		
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as	 a1 List the economic concepts related to characteristics in engineering analysis to improve the engineering process. a2 Recognize business and management principles relevant to engineering for replacement and 		

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

appropriate to the discipline and within the principles and contexts of	depreciation of equipment to reduce the cost of operations.
sustainable design and development.	b1 Combine different ideas, views, and knowledge from
	a range of sources to evaluate the characteristics of project economic.
	c1 Assess economic, societal, and environmental
	dimensions and risk management in engineering design.
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	 a2 List the engineering-related economy. b1 Innovate economy methodical approaches when dealing with new and advancing technology. c2 Use fundamental economy organizational abilities.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Basic concepts of engineering economy as applied to the evaluation of capital investment alternatives in both the private and public sectors of our economy	4	4	-
2	Attention is given to the time value of money by showing the concepts and techniques for evaluating the worth of products, systems, structures, and services in relation to their cost		4	-
3	Economic and cost concepts: calculating economic equivalence, comparison of alternatives and replacement economy	6	6	-
4	4 Deprecation and method used for calculating			-
5	Economic optimization in design and operations. Cost estimation of products and systems		4	-
	Total	28	28	-

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Basic concepts of engineering economy as applied to the evaluation of capital investment alternatives in both the private and public sectors of our economy	х	x			x									
Attention is given to the time value of money by showing the concepts and techniques for evaluating the worth of products, systems, structures, and services in relation to their cost	х	x			x	x								
Economic and cost concepts: calculating economic equivalence, comparison of alternatives and replacement economy	х	x			x		х							
Deprecation and method used for calculating	х	х			х	х								
Economic optimization in design and operations. Cost estimation of products and systems	x	x			x		x							

6. Teaching and learning methods for disabled students:

	defining and rearring internous for disabled stadents.	
No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different level of students.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7. Student evaluation:

7.1 Student evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Mid Term exam	C3	a1, a2
2	Semester work (quizzes, sheets, report)	C3	c1, a1
3	Final term examination	C3	a2, b1, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester work (quiz, report)	6 th , 11 th
2	Mid Term examination	8^{th}
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation method	Weights	
1	Mid-term examination	20%	
2	Semester work	20%	
3	Final-term examination	60%	
	Total 100%		

8. List of References:

No.	Reference List
1	Engineering economic and financial accounting, A.R.Argasri and VVR McGraw-Hill,New
1	Delhi,2006
2	Industrial Engineering M.I. KHAN, New-Age publishers, New Delhi,2008
3	Engineering Economics Rajan Misra, University science press, New Delhi,2009

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

10. Matrix of Competencies and LO's:

No	Торіс		Competencies	LO's
1	Basic concepts of engineering economy as applied to the evaluation of capital investment alternatives in both the private and public sectors of our economy	2	C3	a1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Attention is given to the time value of money by showing the concepts and techniques for evaluating the worth of products, systems, structures, and services in relation to their cost	2	C3	a1
3	Economic and cost concepts: calculating economic equivalence, comparison of alternatives and replacement economy		С3	a2
4	Deprecation and method used for calculating		C3	a2
5	Economic optimization in design and operations. Cost estimation of products and systems		C3	a2

Course Coordinator: Dr. Rania Hamdy & Dr. Hany Hashish

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Numerical Methods in Engineering (MTH302)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Numerical Methods in Engineering
Course Code	MTH302
Year/Level	Level 2
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims:

No.	Aims
1	Master a broad range of engineering knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying numerical theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve engineering problems of varying complexity and variation.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify,	a1 Describe the relevant mathematical principles and theories in the
formulate, and solve	discipline.
complex	a2 Explain the scientific principles and theories that apply to the topic.
engineering	b1 Using math ideas and theories that are applicable to the field.
problems by	b2 Using scientific concepts and theories that are relevant to the
applying	profession.
engineering	c1 solve complex engineering problems by -applying the concepts and the
fundamentals, basic	theories of mathematics.
science, and	c2 Identify complex engineering problems by applying the concepts and
mathematics.	the theories of sciences, appropriate to the discipline.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Numerical solution of linear and nonlinear systems	4	4	-

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Numerical differentiation and integration	6	6	-
3	Curve fitting and interpolation	10	10	-
4	Numerical solution of initial value problems	4	4	-
5	Boundary and Eigen value problems	4	4	-
	Total	28	28	ı

5. Teaching and learning methods:

5. Teaching and learning methods:														
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Numerical solution of linear and nonlinear systems		х			х	х								х
Numerical differentiation and integration		Х			х	х								х
Curve fitting and interpolation		Х			х	Х								х
Numerical solution of initial value problems		х			х	х								х
Boundary and Eigen value problems		х			х	х								х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason		
1	Presentation of the course in digital material	Better access any time		
2	Wed communication with students	Better communication with certain cases		
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students		

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1	a1, a2, b1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Semester work (quizzes, sheets, report)	C1	a2, c1, c2
3	Final term examination	C1	b1, b2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	2 nd -7 th - 9 th -14 th
3	Final term examination	15 th

7.3 Weighting of Evaluation:

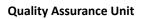
No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	Kiusalaas, Jaan. Numerical methods in engineering with Python 3. Cambridge university
	press, 2013.
2	B. S. Grewal "Numerical Methods in Engineering and Science" Mercury Learning and
	Information (2018).

9. Facilities required for teaching and learning:

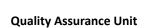
No.	Facility
1	Lecture classroom
2	Presenter
3	White board
4	Data show system
5	Sound system


10. Matrix of Competencies and LO's:

No.	Торіс	Aims	Competencies	LO's
1	Numerical solution of linear and nonlinear systems	1	C1	a1
2	Numerical differentiation and integration	1	C1	a2
3	Curve fitting and interpolation	1	C1	b1
4	Numerical solution of initial value problems	1	C1	b2
5	Boundary and eigen value problems	1	C1	c1, c2

Course Coordinator: Dr. Samar Madian

Head of Department: Assoc. Prof. Dr. Amal Bahiry



Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Hydrology and Irrigation Engineering (CIE305)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Hydrology and Irrigation Engineering
Course Code	CIE 305
Year/Level	Level 3
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	ENG301

Teaching hours	Lectures	Tutorial	Practical
	2	2	-

2. Course Aims

No.	Aims								
4	Use the techniques, skills, and current engineering tools required for irrigation engineering practices								
7	Achieve an optimum design of irrigation and drainage systems and the applications of hydrology.								

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	 a2 Explain the scientific principles, and theories that apply to water resources and Irrigation. a3 Explain the basic principles of irrigation and drainage systems. b1 Estimating of water requirements for crops and managing and distribution of irrigation systems. b2 Using scientific concepts and theories that are relevant Crops, Soil and Water relation.
C2 Develop and conduct appropriate simulation,	a1 Define basic characteristics, properties,
analyze and interpret data, assess and evaluate	concepts, and techniques of Irrigation and
findings, and use statistical analyses and	Drainage Engineering.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

objective **b1** Conduct basic experiments to learn about engineering judgment to draw conclusions. the basic characteristics and features of flow types in open channels. **b2** Conduct basic experiments to learn about the applications of Hydraulic, Hydrology and fluid mechanics in the fields of Irrigation Engineering and Canal Design. **a1** Recognize the fundamentals of Irrigation C11 sustainable Select appropriate and Canal Design, Canal lining and Modern technologies for construction of buildings, Irrigation Systems. infrastructures and water structures; using either **c1** Using either numerical techniques or numerical techniques or physical measurements physical measurements and/or testing by and/or testing by applying a full range of civil applying a full range of civil engineering concepts and techniques engineering concepts and techniques of Irrigation Canal structural analysis and mechanics, properties and Design and Sprinkler and Trickle Irrigation strength of materials, surveying, soil mechanics, parts. hydrology and fluid mechanics. C12 Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and **b2** Achieve an optimum Planning and design Earth Retaining Structures; and at least three of of open channel for irrigation and drainage the following civil engineering topics: networks, and design modern irrigation Transportation and Traffic, Roadways and systems (sprinkler and Trickle). Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
	Introduction – The concept of Irrigation and its importance			
1	 Stages of Development of Irrigation in Egypt – Irrigation 	2	2	=
	Water Resources.			
2	Plant Relationship with Soil and Water.	2	2	-
3	Water Consumptive Use & Water Requirements for Crops.	3	3	-
4	Planning and Design of Irrigation and Drainage Networks.	4	4	-
5	Different Irrigation Methods	3	3	-
6	Surface Water Irrigation	2	2	-
7	Sprinkler Irrigation	4	4	-
8	Trickle Irrigation	4	4	-
9	Drainage Systems	4	4	-
	Total	28	28	-

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

5. Teaching and learning methods:														
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
Introduction – The concept of Irrigation and its importance – Stages of Development of Irrigation in Egypt – Irrigation Water Resources.	x			x	x	x	x			x				
Plant Relationship with Soil and Water.	х			х	х	х	х			х				х
Water Consumptive Use & Water Requirements for Crops.	х			х	х	х				х		х	X	
Planning and Design of Irrigation and Drainage Networks.	х			х	х	х	Х		X	x	х			
Different Irrigation Methods	Х			Х	Х	Х	Х		Х	Х	Х			
Surface Water Irrigation	х			х	Х	х	х			х		х		
Sprinkler Irrigation	х			Х	х	х	х	х		х	х			
Trickle Irrigation	х			х	х	х	х	х		х	х			
Drainage Systems	Х			Х	Х	х	Х			х			Х	

6. Teaching and learning methods for disabled students:

<u> </u>	defining and rearring methods for disabled students	
No.	Teaching Methods	Reason
1	Presentation of the course in digital material.	Better access any time.
2	Weekly communication with students.	Better communication with certain cases.
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different levels of students.
4	Electronic model system for the Institution.	Better access any time.

7. Student Evaluation:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
		C1	a2, b1, b2
1	Mid-term examination	C2	a1, b1, b2
		C12	b2
	Semester work	C1	a2, a3, b1, b2
2		C2	a1, b1, b2
2		C11	a1, c1
		C12	b2
		C1	a2, b1, b2
4	Final term examination	C2	a1, b2
4		C11	c1
		C12	b2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	semester work	2 nd ,5 th , 7 th , 10 nd ,12 th , 14 th
2	Mid Term examination	8^{th}
3	Final term examination	15 th

7.3 Weighting of Evaluation:

	10 11 01 ₀ 11 11 1 ₀ 01 11 11 11 11 11 11 11 11 11 11 11 11						
No.	Evaluation Method	Weights					
1	Mid-term examination	20%					
2	Semester work	20%					
3	Final-term examination	60%					
	Total 100%						

8. List of References:

No.	Reference List								
1	Peter Waller and Muluneh Yitayew. (2015). "Irrigation and Drainage Engineering". springer.								
2	Dean E. Eisenhauer, Derrel L. Martin, et al. (2021). "Irrigation Systems Management". ASABE Puplications.								
3	Vijay P. Singh and Qiong So. (2022). "Irrigation Engineering: Principles, Processes, Procedures, Design, and Management". Cambridge University Press.								
4	محمد السلاوي و امير مباشر (2014). "هندسة الري والصرف". جامعة الأزهر.								

9. Facilities required for teaching and learning:

_		<u> </u>						
Facility								
	1	Lecture classroom	3	White board				
	2	Seminar	4	Data show system				

10. Matrix of knowledge and skills of the course:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No	Торіс	Aims	Competencies	LO's
1	Introduction – The concept of Irrigation and its importance – Stages of Development of Irrigation in Egypt – Irrigation Water Resources.	4	C1	a2, a3
2	Plant Relationship with Soil and Water.	4	C1	b1, b2
3	Water Consumptive Use & Water Requirements for Crops.	4	C1	b1, b2
4	Planning and Design of Irrigation and Drainage Networks.	4	C2	a1, b1, b2
5	Different Irrigation Methods	7	C11	a1
6	Surface Water Irrigation	7	C11	a1
7	Sprinkler Irrigation	7	C11 C12	c1, b2 b2
8	Trickle Irrigation	7	C11 C12	c1, b2 b2
9	Drainage Systems	7	C1 C2	a3 a1

Course Coordinator: Prof. Dr. Mohamed Elkiki **Head of Department:** Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Reinforced Concrete (1) (CIE306)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Reinforced Concrete (1)
Course Code	CIE306
Year/Level	Level 3
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	ENG205

Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	3	2	-

2. Course Aims

No.	Aims
1	Master a broad range of engineering knowledge and specialized skills, as well as the ability to apply acquired knowledge by applying theories and abstract thinking to identify, diagnose, and solve engineering problems of varying complexity and variation.
7	Achieve an optimum design of Reinforced Concrete.

3. Competencies:

Competencies	Learning Outcomes (LO'S)				
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	a3 Explain the basic principles of engineering. c2 Practice the neatness and aesthetics in design to approach stresses in beams, torsional stresses				
C2 Develop and conduct appropriate simulation, analyze, and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	 a2 Define the principles, basic properties, and features of construction material, as well as their use in sustainable technologies for construction of buildings, infrastructures. c3 Applying statistical analyses and objective engineering judgment to draw conclusions. 				
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health, and safety requirements,	a1 Describe quality assurance systems, codes of practice, and standards				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C11 Select appropriate and	
sustainable technologies for	
construction of buildings,	
infrastructures and water structures; c1 Using	g either nume
using either numerical techniques or measure	ments and/or t
physical measurements and/or of civil	engineering c
testing by applying a full range of civil structura	al analysis and
	of materials,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	y and fluid mec
properties and strength of materials,	
surveying, soil mechanics, hydrology	
and fluid mechanics.	
C12 Achieve an optimum design of b1 Ach	ieve an optir
Poinforced Concrete Concrete	_

erical techniques or physical testing by applying a full range concepts and techniques of d mechanics, properties and , surveying, soil mechanics, chanics.

| Reinforced Concrete. | Concrete

mum design of Reinforced

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Introduction, materials, properties	2	2	ı
2	Design methods and requirements.	2	2	-
3	Load distribution	4	4	-
4	Bond length between concrete and steel bars	4	4	Ī
5	Loading analysis and design	4	4	ı
6	Limit state design method (Flexural analysis and design,	4	4	-
	shear, and design, etc. Loading analysis and design)			
7	Design of Beams and design of solid slabs One- and	4	4	-
	two-way slabs			
8	Short columns	4	4	-
	Total	28	28	_

5. Teaching and learning methods:

5. Teaching and learning methods.														
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
Introduction, materials, properties		Х			х			Х						Х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Design methods and requirements.	х		х		х			х
Load distribution	х		Х		Х			х
Bond length between concrete and steel bars	х		х		х			х
Loading analysis and design	х		Х		Х			Х
Limit state design method (Flexural analysis and design, shear, and design, etc. Loading analysis and design)	x		x		x			x
Design of Beams and design of solid slabs One- and two-way slabs	х		х		х			х
Short columns	х		х		Х			х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason				
1	Presentation of the course in digital material	Better access any time				
2	Wed communication with students	Better communication with certain cases				
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students				
4	Electronic model system for the Institution.	E. learning				

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
		C2	a2
1	Mid-term examination	C4	a1, b1
		C12	b1
		C2	a2
2	Semester work	C4	a1
		C12	b1
		C2	a2, c3
3	Final term examination	C4	a1
		C12	b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	semester work	2 nd ,7 th , 9 th
2	Mid Term examination	8^{th}
3	Practical Examination	14 th
4	Final term examination	15 th

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

8. List of References:

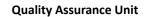
No.	Reference List				
1	Course notes: Are delivered during the lecture, including handout materials such as solved				
	problems, design charts, tables, etc.				
2	Essential books (textbooks / design codes):				
	Egyptian Code for Design and Construction of Reinforced Concrete Structures 2018.				
	Design Aids and Examples in Accordance with the Egyptian Code for Design and				
	Construction of Reinforced Concrete Structures 2018.				

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Introduction, materials, properties	1, 2, 7	C1	a3
2	Design methods and requirements.	1, 2, 7	C2 C4 C12	a2, c3 a1 b1
3	Load distribution	1, 2, 7	C2	a2
4	Bond length between concrete and steel bars	1, 2, 7	C2 C4	a2, c3 a1
5	Loading analysis and design	1, 2, 7	C2 C4 C12	a2, c3 a1 b1


Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Limit state design method (Flexural analysis and	1, 2, 7	C2	a1, c3
6	design, shear and design, etc. Loading analysis		C4	a1
	and design)		C12	b1
	Design of Beams and design of solid slabs One-	1, 2, 7	C2	a1, c3
7	and two-way slabs.		C4	a1
			C12	b1
	Short columns	1, 2, 7	C2	a1, c3
8			C4	a1
			C12	b1

Course Coordinator: Dr. Shady Ragheb

Head of Department: Prof. Dr. Mohamed Elkiki

Surveying (2) (CIE307)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Surveying (2)
Course Code	CIE307
Year/Level	Level 3
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre-request	CIE202

Teaching hours	Lectures	Tutorial	Practical
	2	1	1

2. Course Aims:

No.	Aims
6	Analyze data from the intended tests to manage resources creatively
10	Select appropriate and sustainable technologies for civil engineering fields such as
10	surveying.

3. Competencies:

Competencies	Learning Outcomes (LO'S)					
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	a2 Explain the scientific principles and theories that apply to the topic.b1 Using math ideas and theories that are applicable to the field.					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C11 Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.

- **a1** Recognize the fundamentals of surveying.
- c1 Using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of surveying.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Indirect methods for distance measurement: Stadia method-tangent methods-substance bar.	2	1	1
2	Setting out of horizontal and vertical curves	4	2	2
3	Introduction to theory of errors and error analysis of surveying measurements. Computations of areas and volumes of earth work in construction sites.	6	3	3
4	Coordinate systems and transformations coordinate computations: Polar method-intersection-resection	6	3	3
5	Modern methods for distance measurements: Distance measurement (EDM) and total stations.	4	2	2
6	Setting out of engineering projects.	2	1	1
7	Course Project	4	2	2
	Total	28	14	14

5. Teaching and learning methods:

5. leaching and learning methods.														
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Indirect methods for distance measurement:	х				х	х								х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Stadia method-tangent methods-substance bar.	х		х	х				х
Setting out of horizontal and vertical curves	х		х	х				х
Introduction to theory of errors and error analysis of surveying measurements. Computations of areas and volumes of earth work in construction sites.	х		х	×				х
C Coordinate systems and transformations coordinate computations: Polar method-intersection-resection	x		×	×				x
Modern methods for distance measurements: Distance measurement (EDM) and total stations.	х		x	x				х
Setting out of engineering projects.	х		х	х				х
Course Project	х		х	х				х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students
4	Electronic model system for the Institution.	E. learning

7. Student evaluation:

7.1 Student evaluation method:

No.	Evaluation Method	Competencies	LO's
1 Midtorm evamination		C1	a2
1	Midterm examination	C11	a1
2	Semester work (quizzes, sheets, report)	C10	d1, d2
2	Final term evamination	C1	a2, b1
3	Final term examination	C11	a1, c1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester work	2 nd -7 th - 9 th
2	Mid Term examination	8^{th}
3	Practical examination	14 th
4	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation method	Weights
1	Mid-term examination	10%
2	Semester work	20%
3	Practical examination	10%
4	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	Walker, J., and Awange, J. L. (2017) Surveying for Civil and Mine Engineers.
2	Wolf, P.R. and Brinker, R.C., Elementary Surveying, 10 th ed., Harper Collins College Publisher, NY, USA (2002)

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system
5	Lab

10. Matrix of knowledge and skills of the course:

-	LU.	Matrix of knowledge and skins of the course.			
	No	Торіс	Aims	Competencies	LO's
	1	Indirect methods for distance measurement: Stadia method-tangent methods-substance bar.	1, 10	C1	a2, b1
	2	Setting out of horizontal and vertical curves	1, 10	C1 C11	a2 a1, c1
	3	Introduction to theory of errors and error analysis of surveying measurements. Computations of areas and volumes of earth work in construction sites.	1,10	C11	a1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4	pordinate systems and transformations coordinate computations: Polar method-intersection-resection	1, 10	C1 C11	a2 a1
5	Modern methods for distance measurements: Distance measurement (EDM) and total stations.	1, 10	C1 C11	b1 C1
6	Setting out of engineering projects.	1, 10	C1 C11	a2, b1 a1, C1
7	Course Project	1, 10	C1 C11	a2, b1 a1, C1

Course Coordinator: Dr. Ayman Helal

Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

<u>Traffic and Transportation Engineering</u> (CIE308)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Traffic and Transportation Engineering
Course Code	CIE308
Year/Level	Level 3
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Too shing house	Lectures	Tutorial	Practical
Teaching hours	2	1	-

2. Course Aims

No.	Aims							
1	Master a broad range of engineering knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve engineering problems of varying complexity and variation.							
6	Analyze data from the intended tests to manage resources creatively							
7	Achieve an optimum design of Transportation and Traffic, Roadways and Airports, Railways, or any other emerging field relevant to the discipline.							

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	c2 Practice the neatness and aesthetics in design
	a2 Define the principles and basic of traffic and transportation works and use the sustainable technologies.
and evaluate findings, and use statistical analyses and objective	b2 Conduct basic experiments to learn about transportation and traffic or other emerging field relevant to the discipline. b3 Analyze and interpret data.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	c3 Applying statistical analyses and objective engineering judgment to draw conclusions.
C11 Select appropriate and sustainable technologies for road construction	a2 Summarize, appropriate and sustainable technologies for road construction
C12 Achieve an optimum design for Transportation and Traffic, Roadways, or any other emerging field relevant to the discipline.	b2 Achieve an optimum design of works for transportation and traffic or any other emerging field relevant to the discipline.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Measures of flow, speed, and Density	2	2	-
2	Statically of traffic characteristics (travel time, delay, speed, pedestrians, parking, and accident studies	2	2	-
3	Traffic signals	2	2	-
4	Parking garages and terminals design	2	2	-
5	Freeway surveillance and control	2	2	-
6	General characteristics of transportation: streets, highways, rail, transit, water, and pipelines. Egypt transport system: on overview	2	2	-
7	Fundamentals of traffic flow: time space diagrams, capacity analysis	2	2	-
8	control, IVHS, public issues and administration	4	4	-
9	Transport system design: characteristics of driver, vehicle, and road. Route location, horizontal, an. Vertical alignment, earthwork, drainage, and pavements	2	2	-
10	Economic evaluation, system operation, maintenance, and rehabilitation	4	4	-
11	Environmental impacts, various laboratory experiments and design projects supplement the subject matter	4	4	-
	Total	28	28	-

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Measures of flow, speed, and Density		х			х	х								х
Statically of traffic characteristics (travel time, delay, speed, pedestrians, parking, and accident studies		х			х	х								х
Traffic signals		х			Х	х								х
Parking garages and terminals design		х			х	х								х
Freeway surveillance and control		Х			Х	х								х
General characteristics of transportation: streets, highways, rail, transit, water, and pipelines. Egypt transport system: on overview		x			х	x								х
Fundamentals of traffic flow: time space diagrams, capacity analysis		х			х	х								х
control, IVHS, public issues and administration		х			х	х								х
Transport system design: characteristics of driver, vehicle, and road. Route location, horizontal, an. Vertical alignment, earthwork, drainage, and pavements		х			х	x								х
Economic evaluation, system operation, maintenance, and rehabilitation		х			х	х								х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Environmental impacts, various laboratory experiments and design projects	х		х	х				x
supplement the subject matter								

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students
4	Electronic model system for the Institution.	E. learning

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's	
1	Midtorm evamination	C2	a2, b2	
	Midterm examination	C12	b2	
2	Semester work (quizzes, sheets, report)	C2	a2, c3	
		C2	a2, b2, c3	
3	Final term examination	C11	a2	
		C12	b2	

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8 th
2	Semester work	7 th - 9 th
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

No.	Reference List				
1	Khisty C. J. and Lall B. K., Transportation Engineering – An Introduction,3rd Edition,				
1	Prentice-Hall, Inc., New Jersey, USA, 2018.				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Wright, P. H. and Dixon K. K., Highway Engineering, 7th Edition, John Wiley & Sons, Inc., 2016.

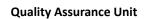
Tom V. M., (2017) lecture notes in traffic engineering and management. Department of civil engineering, Bombay.

9. Facilities required for teaching and learning:

	Facility				
1	Lecture classroom	3	White board		
2	Seminar	4	Data show system		

10. Matrix of knowledge and skills of the course:

No	Topic	Aims	Competencies	LO's
1	Measures of flow, speed and Density	1, 7	C2	a2
2	Statically of traffic characteristics (travel time, delay, speed, pedestrians, parking and accident studies		C2	a2 c3
3	Traffic signals		C2 C12	a2, b2 b2
4	Parking garages and terminals design	1, 7	C2 C12	a2 b2
5	Freeway surveillance and control		C2 C12	a2, c3 b2
6	General characteristics of transportation: streets. And highways, rail, transit, water, and pipelines. Egypt transport system: on overview.	1, 7	C2 C11	a2, c3 a2
7	Fundamentals of traffic flow: time space diagrams, capacity analysis	1, 7	C2	a2 b3 c3
8	control, IVHS, public issues and administration	1, 7	C2	a2 b2
9	Transport system design: characteristics of driver, vehicle, and road. Route location, horizontal, and vertical alignment, earthwork, drainage, and pavements	1, 7	C2 C11 C12	a2, b2, c3 a2 b2
10	Economic evaluation, system operation, maintenance, and rehabilitation	1, 7	C2	a2 b2
11	Environmental impacts, various laboratory experiments and design projects supplement the subject matter	1, 7	C2	a2 b2



Quality Assurance Unit

Course Coordinator: Assoc. Prof. Dr. Alaa Gabr **Head of Department:** Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Technical Report Writing (ENG207)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Technical Report Writing
Course Code	ENG207
Year/Level	Level 2
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Tarabina havva	Lectures	Tutorial	Practical
Teaching hours	1	-	2

2. Course Aims:

No.	Aims
	Communicate effectively with a variety of audiences using a variety of forms, methods, and
5	languages; cope with academic and professional issues in a critical and creative manner;
	and display leadership, business administration, and entrepreneurial abilities.

3. Competencies:

5. Competencies.			
Competencies	Learning Outcomes (LO'S)		
C5 Practice research	a1 Define technical language and report writing.b1 Assess different ideas, views, and knowledge from a range of		
techniques and methods of	sources.		
investigation as an inherent	c1 Prepare technical reports.		
part of learning.	d1 Search for information to engage in lifelong self-learning		
	discipline.		
C8 Communicate effectively –			
graphically, verbally and in	d1 Communicate effectively.		
writing – with a range of	d2 Demonstrate efficient IT capabilities.		
audiences using	a Demonstrate emotern to apabilities.		
contemporary tools.			

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
-----	--------	----------	----------	-----------

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Introduction to technical writing. Define a report, Types of reports, Aim. Common concepts: clarity of Writing, Consistency Supporting Material Language rules (voice, tense) and Style	2	-	-
2	Common components of a technical report Organization of report sections Section's function and content	2	_	-
3	How to write a technical report Identify layout, Determine Audience Assign reference, add non text component. Mechanics of report writing. Quantitative Writing	2	-	-
4	Equations, Tables and Figures	1	-	-
5	Literature citations	1	-	-
6	Using word processing for Writing Report	1	-	8
7	Creating slides with presentation graphics programs	1	-	4
8	MS Excel Application and power view report command	2	-	8
9	Database Report using MS SQL	2	-	8
	Total	14	-	28

5. Teaching and learning methods:

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
Introduction to technical writing. Define a report, Types of reports, Aim. Common concepts: clarity of Writing, Consistency Supporting Material Language rules (voice, tense) and Style	х	x		x	x	х	х							х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Common components of a technical report Organization of report sections Section's function and content	x	х	х	х	х	x				х
How to write a technical report Identify layout, Determine Audience Assign reference, add non text component. Mechanics of report writing. Quantitative Writing	х	х	x	х	х	х				х
Equations, Tables and Figures	х	х	Х	х	х	х				х
Literature citations	х	х	Х	х	х	х				х
Using word processing for Writing Report	х	х	х	х	х	х				х
Creating slides with presentation graphics programs	х	х	Х	х	х	х				х
MS Excel Application and power view report command	х	х	х	х	х	х				х
Database Report using MS SQL	х	Х	Х	х	Х	х				х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Web communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different levels of students

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C5	a1
2	Semester work (quizzes, sheets, report, presentation)	C5, C8	c1, d1, d2
3	Practical Examination	C5, C8	c1, d1, d2
4	Final term examination	C5, C8	b1, a1

7.2 Evaluation Schedule:

	12 Evaluation Schedule.							
N	No.	Evaluation Method	Weeks					
	1	Midterm examination	8 th					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Semester work	2 nd ,7 th ,9 th ,13 th
3	Practical Examination	14 th
4	Final term examination	15 th

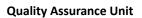
7.3 Weighting of Evaluation:

No.	Evaluation method	Weights
1	Mid-term examination	10%
2	final examination	60%
3	Practical examination	10%
4	Semester work	20%
	Total	100%

8. List of References:

No.	Reference List
1	How to write technical report, 2010 by lutezhering.

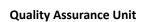
9. Facilities required for teaching and learning:


No.	Facility
1	Lecture classroom
2	Presenter
3	Computer lab.
4	White board
5	Data show system
6	Wireless internet
7	Sound system

10. Matrix of Competencies and LO's:

10.	Wath of Competences and Eo 3.					
No	Торіс	Aims	Competencies	LO's		
1	Introduction to technical writing	5	C5	a1		
2	Common components of a technical report	5	C5	a1		
3	How to write a technical report	5	C5	c1		
4	Equations, Tables and Figures	5	C5	a1		
5	Literature citations	5	C5	b1, d1		
6	Using word processing for Writing Report	5	C5	b1		
7	Creating slides with presentation graphics programs	5	C8	d1, d2		
8	MS Excel Application and power view report command	5	C8	d1, d2		
9	Database Report using MS SQL	5	C5	b2		

Course Coordinator: Dr. Mohamed Elbindary & Dr. Hany Hashish



Head of Department: Assoc. Prof. Dr. Amal Bahiry

Date of Approval: 2022

Open Channel Hydraulics (CIE401)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Open Channel Hydraulics
Course Code	CIE401
Year/Level	Level 4
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	ENG301

Tanahina hawa	Lectures	Tutorial	Practical		
Teaching hours	2	1	1		

2. Course Aims

No.	Aims
1	Master a broad range of engineering knowledge and specialized skills by applying theories and thinking to identify and solve engineering problems regarding to the applications of open channel hydraulics.
7	Achieve an optimum design for nonuniform flow, gradually varied flow, and rapidly varied flow.
10	Select appropriate and sustainable technologies for open channel hydraulics best hydraulic section, gradually varied flow, rapidly varied flow and hydraulic machines (pump).

3. Competencies:

3. Competencies.				
Competencies	Learning Outcomes (LO'S)			
C2 Develop and conduct appropriate	a2 Define the principles, basic properties, and features of			
simulation, analyze, and interpret	open channel flow, specific energy, specific force, surface			
data, assess and evaluate findings,	water profiles for water structures, Turbines and Pumps.			
and use statistical analyses and	c2 Conduct basic experiments to learn about the basic			
objective engineering judgment to	characteristics and features of flow types in open channels,			
draw conclusions.	hydraulic jump.			
C12 Achieve an optimum design of	b1 Achieve an optimum design for nonuniform flow in open			
open channel flow hydraulics, and	channel.			
surface water profiles related to	b2 Achieve an optimum design for rapidly varied flow,			
hydraulic structures and water	gradually varied flow in open channel, pumps, and turbines.			
resources.				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Introduction – review (pipelines hydraulics)	2	-	2
2	Principles of hydraulics of open channel flow	4	-	4
3	Critical flow – velocity distribution – unsteady flow equations	4	-	4
4	Energy approach Practical: [Hump + Depression]	6	ı	6
5	Momentum approach – rabidly varied flow Practical: [Hydraulic jump]	4	-	4
6	Surface roughness	2	-	2
7	Gradually varied flow Practical: [G.V.F]	2	-	2
8	Hydraulic machines (pump) – Best hydraulic section	4	-	4
	Total	28	-	28

5. Teaching and learning methods:

Topics	Fa ce -fa ce lec tu re	On line lect ure	Fli pp ed Cl as sr oo m	Pr es en tat io n an d m ov ies	Di sc us sio n	Pr ob le m sol vi ng	Br ai n st or mi ng	Pr oj ec ts	Sit e Vi sit s	Se If Ie ar ni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
Introductio n –review (Pipelines hydraulics)		x			x		X							
Principles of hydraulics of open channel flow		х			x		x							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Critical flow - velocity distribution - unsteady flow equations	x		х	X				
Energy approach Practical: [Hump + Depression]	x		х	Х				
Momentum approach – rabidly varied flow Practical: [Hydraulic jump]	x		x	X				
Surface roughness	х		х	X				
Surface roughness Gradually varied flow	x		x	Х				
Hydraulic machines (pump) – Best hydraulic section	x		x	X				

6. Teaching and learning methods for disabled students:

o. Teaching and Tearning Methods for disabled students.								
No.	Teaching Methods	Reason						
1	Presentation of the course in digital material	Better access any time						
2	Wed communication with students	Better communication with certain cases						
	Asking small groups to do assignments; each	Knowledge and skills transfer among						
3	composed of low, medium, and	different levels of students						
	high-performance students							

7. Student Evaluation:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Mid torm evamination	C2	a2
1	Mid-term examination	C12	b1
	Compository words	C2	a2, c2
	Semester work	C12	b1, b2
3	Practical Examination	C2	c2
	Final tages are as in ation	C2	a2
4	Final term examination	C12	b1, b2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester work	2 nd ,7 th ,9 th
2	Mid Term examination	8 th
3	Practical Examination	14 th
4	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	10%
2	Semester work	20%
3	Practical Examination	10%
4	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	Khurmi, R.S. (2018). " A textbook of hydraulics, fluid mechanics and hydraulic machines" S.
	Chanel and company Ltd. P.990
2	Subramanya, K. (2018 "Flow in open channels" McGra- Hill Education (India). P.602
3	Glenn E. Moglen. 2019. Fundamentals of Open Channel Flow. CRC Press. Available on Taylor
	& Francis eBooks.

9. Facilities required for teaching and learning:

	Facility								
1	Lecture classroom	3	White board						
2	Seminar	4	Data show system						
5	Lab.								

10. Matrix of knowledge and skills of the course:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No	Торіс	Aims	Competenci es	LO's
1	Introduction – review (Pipelines hydraulics)	7	C2	a2
2	Principles of hydraulics of open channel flow	1	C2 C12	a2 b1, b2
3	Critical flow – velocity distribution – unsteady flow equations	1	C12	b1, b2
4	Energy approach Practical: [Hump + Depression]	7	C12	b1, b2
5	Momentum approach – rabidly varied flow Practical: [Hydraulic jump]	7	C2 C12	a2, c1 b1
6	Surface roughness	10	C2 C12	a2, c1 b1
7	Surface roughness Gradually varied flow	7	C2 C12	a1, b1 b1
8	Hydraulic machines (pump) – Best hydraulic section	10	C2 C12	a2 b1

Course Coordinator: Assoc. Prof. Dr. Mohamed Gabr **Head of Department:** Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Steel Structures Design (1) (CIE402)

1. Basic Information:

Program Title	Civil Engineering Program				
Department Offering the Program	Civil Engineering Department				
Department Responsible for the Course	Civil Engineering Department				
Course Title	Steel Structures Design (1)				
Course Code	CIE402				
Year/Level	Level 4				
Specialization	Major – Compulsory Course				
Authorization Date of Course Specification	-				
Pre- request	CIE202				

Too shing house	Lectures	Tutorial	Practical
Teaching hours	3	2	-

2. Course Aims:

No	Aims
1	Master a broad range of engineering knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve engineering problems of varying complexity and variation.
7	Achieve an optimum design of steel structures
10	Select appropriate and sustainable technologies for construction of steel buildings. using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields.

3. Competencies:

Competencies	Learning Outcomes (LO'S)						
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a3 Explain the basic principles of engineering in steel structures design. b3 Applying engineering basics that are relevant to the steel structures design. c3 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals. 						
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and	a1 Define, basic characteristics, properties, concepts, and techniques of structural						

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	analysis and mechanics, and properties and strength of materials of steel structures. c3 Applying statistical analyses and objective engineering judgment to draw conclusions.
C9 Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	d3 Refer to relevant literatures.
C11 Select appropriate and sustainable technologies for construction of steel buildings using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics, and properties and strength of materials.	a1 Recognize the fundamentals of structural analysis and mechanics, and properties and strength of materials of steel structures. c1 Using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics, and properties and strength of materials of steel structures.
C12 Achieve an optimum design of steel structures.	b1 Achieve an optimum design of steel structures.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Types of steel structures.	4	2	-
2	Types of loads on steel structural building.	4	2	-
3	Method of Design of steel structural buildings. (ASD - LRFD. Methods)	6	4	-
4	Allowable stress in different steel structural buildings.	4	2	-
5	Design of tension members, according to ASDM.	4	2	
6	Design of Compression members, according to ASDM.	4	4	
7	Design of bolted connections in trusses	4	2	
8	Design of welded connections in trusses	4	4	
9	Design of columns under axial loads.	4	4	-
10	General review of the course	4	2	-
	Total	42	28	-

5. Teaching and learning methods:

No.	Topics	Lecture	Tutorial	Practical
1	Introduction:	6	4	-

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Types of steel structures. Planning & general layout of steel structures.			
2	Types of loads on steel buildings.	3	2	-
3	Methods of design of steel structural buildings: Allowable stress design method (ASD). Load and resistance factored design (LRFD). Allowable stresses in different steel members.	3	2	-
4	Design of truss members: Tension members. Compression members.	6	4	-
5	Design of truss connections: Bolted connections. Welded connections.	6	4	
6	Design of beams: principles & applications on: Roof purlins. Floor beams. Built-up plate girder.	12	8	-
7	Design of beam-columns.	6	4	
	Total	42	28	-

6. Teaching and learning methods for disabled students:

Topics	to fac e	lec tur	pp ed cla ssr oo m	ion an		em sol	aın sto	oje	Sit e visi	g an	Co op era tiv e	co ver	∧ od eli ng	b
1- Introduction:- Types of steel structures.- Planning & general layout of steel structures.	х			х	х					х				х
2- Types of loads on steel buildings.	х			х	х									х
 3- Methods of design of steel structural buildings: - Allowable stress design method (ASD). - Load and resistance factored design (LRFD). - Allowable stresses in different steel members. 	x			х	x									x

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4- Design of truss members:- Tension members.- Compression members.	x		х	х					х
5- Design of truss connections:- Bolted connections.- Welded connections.	х		х	х					х
6- Design of beams: principles & applications on:Roof purlins.Floor beams.Built-up plate girder.	х		х	x					x
7- Design of beam-columns.	х		х	х					х

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
		C1	a3, b3, c3
1	Midterm examination	C2	a1, c3
1	Whaterin examination	C11	a1, c1
		C12	b1
		C1	a3, b3, c3
	Semester work (quizzes, sheets, report)	C2	a1, c3
2		C9	d3
		C11	a1, c1
		C12	b1
		C1	a3, b3, c3
3	Final term examination	C2	a1, c3
3		C11	a1, c1
		C12	b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8^{th}
2	Semester work	continuous evaluation
3	Final term examination	15 th

8. List of References:

No.	Reference List					
	Course notes:					
1	Lecture notes prepared by the course coordinator.					
	Solved examples.					
2	Essential books (textbooks):					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Egyptian Code of Practice for Steel Construction and Bridges (ASD), Code No. 205, HBRC, 2003.
3	Recommended books E. B. Machaly, "Behavior, analysis and design of structural steel element", vol. 1, 2019. E. B. Machaly, "Behavior, analysis and design of steel work connections", vol. 3, 2019.
4	Periodicals, Web sites, etc. www.steelconstruction.org www.modernsteel.com www.berlinsteel.com

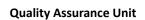
9. Facilities required for teaching and learning:

_	and the second s							
Facility								
1	Seminar	3	teaching aids as interactive (smart) board					
2	discussions rooms with internet connections	4	Data Show					

10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Introduction: Types of steel structures. Planning & general layout of steel structures.	1,10	C1, C9	a3, b3 d3
2	Types of loads on steel buildings.	1,10	C2, C11	a1, c3 a1, c1
3	Methods of design of steel structural buildings: Allowable stress design method (ASD). Load and resistance factored design (LRFD). Allowable stresses in different steel members.	1,10	C1, C2, C11	c3 a1, c3 a1, c1
4	Design of truss members: Tension members. Compression members.	1,7	C1, C11, C12	c3 c1 b1
5	Design of truss connections: Bolted connections. Welded connections.	1,7	C1, C11, C12	c3 c1 b1
6	Design of beams: principles & applications on: Roof purlins. Floor beams. Built-up plate girder.	1,7	C1, C11, C12	c3 c1 b1
7	Design of beam-columns.	1,7	C1, C11, C12	c3 c1 b1

Course Coordinator: Assoc. Prof. Dr. Ashraf Elsabagh



Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Reinforced Concrete (2) (CIE403)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Reinforced Concrete (2)
Course Code	CIE403
Year/Level	Level 4
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	CIE306

Too shing house	Lectures	Tutorial	Practical
Teaching hours	3	2	-

2. Course Aims:

No.	Aims
7	Achieve an optimum design of Reinforced Concrete.

3. Competencies:

Competencies	Learning Outcomes (LO'S)			
C2 Develop and conduct appropriate	a2 Define the principles, basic properties, and			
simulation, analyze, and interpret data,	features of construction material, as well as their use			
assess, and evaluate findings, and use	in sustainable technologies for construction of			
statistical analyses and objective	buildings, infrastructures, and water structures.			
engineering judgment to draw	c3 Applying statistical analyses and objective			
conclusions.	engineering judgment to draw conclusions.			
C9 Use creative, innovative, and flexible				
thinking and acquire entrepreneurial and	d1 Think creatively in solving problems of design.			
leadership skills to anticipate and respond	d3 Refer to relevant literatures.			
to new situations.				
C12 Achieve an optimum design of	b1 Achieve an optimum design of Reinforced			
Reinforced Concrete.	Concrete			

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Introduction	3	2	-
2	Design of Hollow Block and Ribbed slabs	6	4	-

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3	Design of sections subjected to Torsion	6	4	-
4	Design of flat slabs	9	6	-
5	Design of Stairs	9	6	-
6	Design of paneled beams	6	4	-
7	Deflection	3	2	-
Total		42	28	-

5. Teaching and learning methods:

5. leaching and learning		<u> </u>												
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
Introduction					Х			х						х
Design of Hollow Block and Ribbed slabs					х			х						х
Design of sections subjected to Torsion					x			x						х
Design of flat slabs					Х			х						х
Design of Stairs					Х			Х						Х
Design of paneled beams					х			х						х
Deflection					Х			х						Х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students
4	Electronic model system for the Institution.	E. learning

7. Student evaluation:

7.1 Student evaluation method:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Evaluation Method	Competencies	LO's
1	Mid-term examination	C2	a2, c3
	iviiu-teriii examination	C9	d1
2 Seme	Semester work	C2	a2
		C12	b1
		C2	a2, c3
3	Final term examination	C9	d1
		C12	b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	semester work	2 nd ,7 th , 9 th
2	Mid Term examination	8^{th}
3	Practical Examination	14 th
4	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation method	Weights	
1	Mid-term examination	20%	
2	Semester work	20%	
3	Final-term examination	60%	
	Total 100%		

8. List of References:

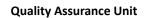
No.	Reference List			
	EL-Metwally, S.E., and Hosny, H.M.H., "Design Fundamental of Structure Concrete." 1977			
1	Ministry of Housing. Utilities and Urban Communities, "Egyptian Code for Design and			
	Construction of Reinforced Concrete Structures (ECCS203-2020)."Cairo 2020.			
	Hilal.M., "Reinforced Concrete Fundamentals." Marcou, 1975 Books			
,	Hilal M., "Design of Reinforced Concrete Halls," Marcou 1981. Nassef, M.A.,"			
2	Reinforced Concrete Design," Cairo Univ., 1988.Abdel Rahman, A., "Fundamental of			
	Reinforced Concrete Incorporating the Egyptian Code of 1989."			

9. Facilities required for teaching and learning:

No.	Facility		
1	Lecture classroom	3	White board
2	Seminar	4	Data Show system

10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Introduction	7	C2	a2, c3
1	Introduction	/	C 9	d1


Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Design of Hollow Block and Ribbed slabs	7	C2	a2, c3
			C12	b1
3	Design of sections subjected to Torsion	7	C9	d1
'	Design of sections subjected to forsion	,	C12	b1
			C2	a2, c3
4	Design of flat slabs	7	C 9	d1
			C12	b1
			C2	a2, c3
5	Design of Stairs	7	C9	d1
	_		C12	b1
6	Design of paneled beams	7	C2	a2, c3
	Design of paneled beams	'	C9	d1
7	Deflection	7	C9	d1

Course Coordinator: Dr. Hamdy Abd Elaty Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Geology and Soil Mechanics (1) (CIE404)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Geology and Soil Mechanics (1)
Course Code	CIE404
Year/Level	Level 4
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Tooching hours	Lectures	Tutorial	Practical
Teaching hours	2	1	1

2. Course Aims:

No.	Aims		
1	Master a broad range of engineering knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve engineering problems of varying complexity and variation.		
10	Select appropriate and sustainable technologies for construction of buildings, infrastructures and water structures; using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such soil mechanics.		

3. Competencies:

5. Competencies.			
Competencies	Learning Outcomes (LO'S)		
C1. Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a3 Explain the basic principles of engineering in geology and soil mechanics. b3 Applying engineering basics that are relevant to geology and soil mechanics. c3 identify, formulate, and solve complex engineering problems by applying geology and soil mechanics fundamentals. 		
C2 Develop and conduct appropriate	a1 Define, basic characteristics, properties,		
experimentation, analyze, and interpret data,	concepts, and techniques of soil mechanics.		

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

assess, and evaluate findings, and use statistical analyses and objective engineering	b1 Conduct basic experiments to learn about the basic characteristics and features of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.
C6 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements	 b1 interpret data derived from laboratory observation from equipment flow sheets, charts and curves to interpret data derived from laboratory observation. c1 Conduct experimental work related to the reinforced concrete and steel structures, foundations and earth retaining structures
C11 Select appropriate and sustainable technologies construction of buildings, infrastructures, and water structures, using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics	a1 Recognize the fundamentals of soil mechanics. c1 Using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of soil mechanics.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Introduction and basics of Geology	2	2	-
2	Basic geological properties of rocks	2	2	-
3	Basic engineering properties of soils Practical: water content – specific gravity – sieve analysis – hydrometer – Casagrande – sand cone test – standard proctor – modified proctor test	12	12	4
4	Permeability and Seepage	4	4	2
5	Effective stresses and pore water pressure	2	2	-
6	Stresses and strains in continuous body and shear stress of soil Practical: un-confined test	2	2	4
7	Consolidation: Practical: oedometer	2	2	4
8	Stability analysis	2	2	-
	Total	28	28	14

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

5. Teaching and learning methods:

5. Teaching and learning methods:														
Topics	Fa ce to fac e lec tur e	On lin e lec tur e	Fli pp ed cla ssr oo m	Pr es en tat io n an d m ovi es	Dis cu ssi on	Pr ob le m sol vin g	Br ain sto rm ing	Pr oj ect s	Sit e vis its	Self-l earni ng and Rese arch	Co op er ati ve	Dis co ve rin g	Mo deli ng	La b
Introduction and basics of Geology	х	х		х	х	x								х
Basic geological properties of rocks	х	x		х	х	x								х
Basic engineering properties of soils Practical: water content – specific gravity – sieve analysis – hydrometer – Casagrande – sand cone test – standard proctor – modified proctor test	х	x		х	x	x								x
Permeability and Seepage	х	х		х	х	х								х
Effective stresses and pore water pressure	х	х		х	х	х								х
Stresses and strains in continuous body and shear stress of soil Practical: un-confined test	х	х		х	х	х								х
Consolidation Practical: oedometer	х	х		х	х	х								х
Stability analysis	x	х		x	х	х								x

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students
4	Electronic model system for the Institution.	E. learning

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
		C1	a3, b3, b3
1	Mid-term examination	C2	a1, b1
		C11	a1, c1
2	Semester work	C1 a3, b3, b3	a3, b3, b3
2	Semester work	C11	a1, c1
3	Practical Examination	C11	a1, c1
		C1	a3, b3, b3
4	Final term examination	C2	a1, b1
4		C6	b1, c1
		C11	a1, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester work	continuous evaluation
2	Mid Term examination	8^{th}
3	Practical Examination	14 th
4	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	10%
2	Semester work	20%
3	Practical Examination	10%
4	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference List
	Course notes:
1	Lecture notes prepared by the course coordinator + solved examples.
	Practical notes prepared by the course coordinator
2	Das, B., M. (2017), "Principles of geotechnical Engineering " Eighth Edition, CENGAGE
	Learning,

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Knappett, J.A. and Craige R. F. (2012), "Craig's Soil Mechanics" Eighth Edition, Spon Press.
 Essential books (textbooks):
 Egyptian Code of Practice for Soil Mechanics and Foundations (2002)

9. Facilities required for teaching and learning:

	. Tuesting required for todaining und rearring.				
No.	Facility				
1	Lecture classroom				
2	Seminar				
3	White board				
4	Data Show system				

10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Introduction and basics of Geology	1	C1	a3, b3, b3
2	Basic geological properties of rocks	1,10	C2 C11	a1, b1 a1, c1
3	Basic engineering properties of soils Practical: water content – specific gravity – sieve analysis – hydrometer – Casagrande – sand cone test – standard proctor – modified proctor test	1,10	C2 C11	a1, b1 a1, c1
4	Permeability and Seepage	1,10	C1 C2 C6 C11	a3,b3,b 3 a1,b1 b1,c1 a1, c1
5	Effective stresses and pore water pressure	1,10	C1 C2 C6 C11	a3,b3,b 3 a1,b1 b1,c1 a1, c1
6	Stresses and strains in continuous body and shear stress of soil Practical: un-confined test	1,10	C1 C2 C6 C11	a3,b3,b 3 a1,b1 b1,c1 a1, c1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7	Consolidation Practical: oedometer	1,10	C1 C2 C6 C11	a3,b3,b 3 a1,b1 b1,c1 a1, c1
8	Stability analysis	1,10	C1 C2 C6 C11	a3,b3,b 3 a1,b1 b1,c1 a1, c1

Course Coordinator: Dr. Hany Hashish.

Head of Department: Prof. Dr. Mohamed Elkiki

Project Management and Control (ENG402)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Civil engineering Department
Department Responsible for the Course	Basic science and Engineering Department
Course Title	Project Management and Control
Course Code	ENG402
Year/Level	Level 4 – Semester 1
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	-

Tooching House	Lectures	Tutorial	Practical
Teaching Hours	1	2	-

2. Course Aims:

No.	Aims						
6	Analyze data from the intended tests to manage resources creatively.						
8	Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.						
9	Deal with biddings, contracts, and financial issues including project insurance and guarantees.						

Competencies	Learning Outcomes (LOs)
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline, and within the principles and contexts of sustainable design and development.	 b1 Judge engineering decisions considering balanced costs, benefits, safety, quality, reliability, and environmental impact. c2 Applying engineering design procedures to generate cost-effective solutions while adhering to sustainable design and development principles and contexts.
C9 Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	d2 Effectively manage tasks, time, and resources.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C13 Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.	a1 Define the plan and manage the construction process.
C14 Deal with biddings, contracts, and financial issues including project insurance and guarantees.	 a1 Define biddings, contracts, and financial issues. b1 Address biddings, contracts, and financial issues including project insurance and guarantees. c1 Apply biddings, contracts, and financial issues on civil engineering projects.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Development, Negotiation, and Specification of The Project Contract	2	4	1
2	Project Planning and Control Using Activity Network Models	2	4	-
3	Network Logic, Scheduling	4	8	-
4	Resource Allocation, Multi-Project Resource Allocation and Leveling Using Available Industrial Software	4	8	-
5	Time-Cost Trade-off Methods	2	4	-
	Total	14	28	-

5. Teaching and Learning Methods:

No	Topics	Fa ce -T o- Fa ce Le ct ur e	O nli ne Le ct ur e	Fli p pe d Cl as sr o o m	Pr es en ta ti o n an d M ov ie s	Di sc us si o n	Problem-Solving	Br ai n St or mi ng	Pr oj ec ts	Si te Vi sit s	Se If- Le ar ng an d Re se ar ch	C o pe ra ti ve	Di sc ov er in g	M od eli ng	L a b
1	Development, Negotiation, and					$\sqrt{}$									

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Specification of The Project Contract								
2	Project Planning and Control Using Activity Network Models	V			$\sqrt{}$				
3	Network Logic, Scheduling	√		V					
4	Resource Allocation, Multi-Project Resource Allocation and Leveling Using Available Industrial Software		V			\checkmark			
5	Time-Cost Trade-off Methods	√			√				

6. Teaching and Learning Methods for Disabled Students:

No.	Teaching Method	Reason					
1	Presentation of The Course in Digital Material	Better Access at Any Time					
2	Wed Communication with Students	Better Communication with Certain Cases					
3	Asking Small Groups to Do Assignments; Each Composed of Low, Medium, and High-Performance Students	Knowledge and Skills Transfer Among Different Levels of Students					
4	An Electronic Model System for The Institution	E. Learning					

7. Student Evaluation:

7.1 Student Evaluation Method:

No.	Evaluation Method	Competencies	LOs
		C3	b1, c2
1	Competer Works (Quizzos Choots Bonorts)	C9	d2
1	Semester Works (Quizzes, Sheets, Reports)	C13	a1
		C14	a1, b1, c1
		C9	d2
2	Mid-Term Exam	C13	a1
		C14	a1, b1, c1
		C3	b1, c2
3	Final-Term Exam	C9	d2
3		C13	a1
		C14	a1, b1, c1

7.2 Evaluation Schedule:

7.12 10 41 44 41 51 1 54 1 54 41 51 51 51 51 51 51 51 51 51 51 51 51 51								
No.	Evaluation Method	Weeks						
1	Semester Works (Quizzes, Sheets, Reports)	4 th , 11 th						

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

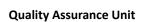
2	Mid-Term Exam	8 th
3	Final-Term Exam	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights				
1	Semester Works (Quizzes, Sheets, Reports)	20%				
2	Mid-Term Exam	20%				
3	Final-Term Exam	60%				
	Total	100%				

8. List of References:

No.	Reference List										
1	Wiley-Blackwell. Code of Practice for Project Management for Construction and										
	Development. Chartered Institute of Building (Great Britain).										
2	Kerzner, Harold. Project Management Workbook. A System Approach to Planning,										
	Scheduling, and Control.										
3	de Marco, A. Project Management for Facility Constructions A Guide for Engineers, and										
	Architects.										
	Project Management Institute and Project Management Institute. A Guide to the Project										
4	Management Body of Knowledge (PMBOK Guide).										
_	Lester, Albert. Project Management, Planning, and Control. Managing Engineering,										
5	Construction, and Manufacturing Projects to PMI, APM, and BSI Standards.										
6	Vanhoucke, M. Management for Professionals Integrated Project Management and Control.										


9. Facilities Required for Teaching and Learning:

	<u> </u>						
Facility							
1	Lecture Classroom	3	White Board				
2	Seminar	4	Data Show System				

10. Matrix of Knowledge and Skills:

No.	Торіс	Aims	Competencies	LOs		
1	Development, Negotiation, and Specification of The Project Contract	9	C14	a1, b1, c1		
2	Project Planning and Control Using Activity Network Models	6, 8	C9 C13	d2 a1		
3	Network Logic, Scheduling	6, 8	C9 C13	d2 a1		
4	Resource Allocation, Multi-Project Resource Allocation and Leveling Using Available Industrial Software	6, 8	C3	b1, c2		
5	Time-Cost Trade-off Methods	6, 8	C3 C9	b1, c2 d2		

Course Coordinator: Dr. Hamdy Abd Elaty

Head of Department: Assoc. Prof. Dr. Amal Bahiry

Computer Applications in Civil Engineering (CIE405)

1. Basic Information:

Program Title	Civil Engineering Program				
Department Offering the Program	Civil Engineering Department				
Department Responsible for the Course	Civil Engineering Department				
Course Title	Computer Applications in Civil Engineering				
Course Code	CIE405				
Year/Level	Level 4				
Specialization	Major – Compulsory Course				
Authorization Date of Course Specification	-				
Pre- request	ENG201				

Tooching house	Lectures	Tutorial	Practical
Teaching hours	2	-	2

2. Course Aims

No	Aims
7	Achieve the optimum design of reinforced concrete and steel structures, hydraulic applications (such as gradually and rapidly varied flow – channel cross-section) and sanitary works (such as water distribution system) using computer applications.
10	Select appropriate and sustainable technologies to design buildings, infrastructures and water structures; using numerical techniques, and computer applications.

Competencies	Learning Outcomes (LO'S)				
C2 Develop and conduct appropriate simulation, analyze and interpret data, assess and evaluate findings, and use statistical for computer applications in civil engineering.	 a1 Define, basic characteristics, properties, concepts, and techniques to design reinforced concrete and steel structures, hydraulic applications (such as gradually and rapidly varied flow – channel cross-section) and sanitary works (such as water distribution system). c1 Choose relevant mathematical and computer-based methodologies for problem modelling and analysis in civil engineering. 				
C11 Select appropriate and sustainable technologies to design reinforced concrete and steel structures, hydraulic	c1 Using software programs (MATLAB or SAP 2000, Excel, EPANET) to design reinforced concrete and steel structures, hydraulic applications (such as gradually				
applications and sanitary works using	and rapidly varied flow — channel cross-section) and				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

either numerical technique and design	sanitary works (such as stormwater network and water
software programs.	distribution system).

4. Course Contents:

No	Topics	Lecture	Tutorial	Practical
1	Study of theoretical models for the analysis of structures. Practical: analyze beams, frames, trusses and slabs	4	1	4
2	Study of how to choose suitable methods for analysis of various structures. Practical: choose suitable methods for designing beams, frames, trusses and slabs	4	-	4
3	Preparation of simple programs based on these models. Practical: design programs for structure analysis using excel or MATLAB	4	1	4
4	Study of available programs and modifying them for analysis of certain problems. Practical: solving some hydraulic problems	6	1	6
5	Training on the use of available commercial software programs. Practical: using SAP 2000, Excel, and EPANET	6	-	6
6	Computer applications. Practical: choosing a civil engineering case	4	-	4
	Total	28	-	28

5. Teaching and learning methods:

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	-learning and Research	Cooperative	Discovering	Modeling	lab
Study of theoretical models for the analysis of	Fa	x		Pres	x	x				Self -I				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	_		 			 	 	 	
structures. Practical: analyze beams, frames, trusses and slabs									
Study of how to choose suitable methods for analysis of various structures. Practical: choose suitable methods for designing beams, frames, trusses and slabs		х		x	х				
Preparation of simple programs based on these models. Practical: design programs for structure analysis using Excel or MATLAB		х		х	х				
Study of available programs and modifying them for analysis of certain problems.		х		х	х				
Training on the use of available commercial software programs. Practical: using sap, excel, EPANET		х		х	х				
Computer applications. Practical: choosing a civil engineering case study for structural analysis, pipe network design, hydraulics, and sanitary engineering.		x		x	х				

6. Teaching and learning methods for disabled students:

No	Teaching Methods	Reason
•		

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Presentation of the course in digital material	Better access any time		
2	Wed communication with students	Better communication with certain cases		
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students		
4	Electronic model system for the Institution.	E. learning		

7. Student Evaluation:

7.1 Student Evaluation method:

No	Evaluation Method	Competencies	LO's
1	Mid-term examination	C2 C11	a1, c1 c1
2	Semester work	C2 C11	a1, c1 c1
3	Practical Examination	C11	c1
4	Final term examination	C2 C11	a1, c1 c1

7.2 Evaluation Schedule:

No	Evaluation Method	Weeks
1	semester work	2 nd ,7 th ,9 th
2	Mid Term examination	8 th
3	Practical Examination	14 th
4	Final term examination	15 th

7.3 Weighting of Evaluation:

No	Evaluation Method	Weights			
1	Mid-term examination	10%			
2	Semester work	20%			
3	Practical Examination	10%			
4	Final-term examination	60%			
	Total 100%				

8. List of References:

No	Reference List
•	
1	Brain R. Hunt et al. A Guide to MATLAB for Beginners and Experienced Users, 2018

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Wendly L. Martinez et al. Computational statistics Handbook with MATLAB, 2019
3	Brain D. Hahn et al. Essential MTLAP for Engineering and scientists, 2018

9. Facilities required for teaching and learning:

Facility					
1	Lecture classroom	3	White board		
2	Seminar	4	Data show system		
5	Lab.				

10. Matrix of knowledge and skills of the course:

No	Topic	Aims	Competencies	LO's
1	Study of theoretical models for the analysis of structures. Practical: analyze beams, frames, trusses and slabs	7, 10	C2	a1, c1
2	Study of how to choose suitable methods for analysis of various structures. Practical: choose suitable methods for designing beams, frames, trusses and slabs	7, 10	C2	a1, c1
3	Preparation of simple programs based on these models. Practical: design programs for structure analysis using Excel or MATLAB	7, 10	C2 C11	a1, c1 c1
4	Study of available programs and modifying them for analysis of certain problems.	7, 10	C2 C11	a1, c1 c1
5	Training on the use of available commercial software programs. Practical: using sap, excel, EPANET	7,10	C2 C11	a1, c1 c1
6	Computer applications. Practical: choosing a civil engineering case study for structural analysis, pipe network design, hydraulics, and sanitary engineering.	10	C11	C1

Course Coordinator: Assoc. Prof. Dr. Mohamed Gabr **Head of Department:** Prof. Dr. Mohammed Elkiki

Water Supply and Sanitary Engineering (CIE406)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Water Supply and Sanitary Engineering
Course Code	CIE406
Year/Level	Level 5
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	ENG 301

Tanahina hawa	Lectures	Tutorial	Practical	
Teaching hours	2	2	-	

2. Course Aims:

No.	Aims									
3	Recognize his or her role in promoting water supply and sanitary engineering by appreciating the importance of the physical and natural environment.									
7	Achieve an optimum design of water supply and sanitary works									

Competencies	Learning Outcomes (LO'S)					
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a3 Explain the basic principles of water supply and sanitary engineering works. b2 Using scientific concepts and theories that are relevant to water supply and sanitary works. 					
C10 Acquire and apply new knowledge, and practice self, lifelong, and other learning strategies.	d1 Search for information to engage in lifelong self-learning water supply and sanitary engineering discipline.					
C11 Select appropriate and sustainable technologies for water supply and sanitary project structures; use numerical techniques or physical measurements and/or testing by applying a full range of civil	a2 Summarize, appropriate and sustainable technologies for water supply and sanitary works and stages.					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

engineering concepts and techniques of hydraulics and fluid mechanics.	
C12 Achieve an optimum design of Water Supply and Sanitary Works.	b2 Achieve an optimum design of works for sanitary works, or any other emerging field relevant to the discipline.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Sources of water and water pollution	2	2	-
2	Drinking water standards, and water quality requirements	2	2	-
3	Surface and groundwater collection (Intakes and wells)	2	2	
4	Water purification stages (Coagulation, flocculation, and sedimentation)	4	4	-
5	Water purification stages (filtration and disinfection)	4	4	-
6	Water storage and distribution	2	2	-
7	Sewage sources and characteristics	2	2	-
8	Planning and design of sewerage system	4	4	-
9	Design of pump stations	2	2	
10	Planning and design of primary and secondary wastewater treatment units		4	
	Total	28	28	-

5. Teaching and learning methods:

5. Teaching and learning methods.														
Topics	Fac e to fac e lec tur e	On lin e lec tur	Fli pp ed cla ssr oo	nta tio n an d	Dis cus sio n	obl em sol vin	sto rm	Pr oje cts	Sit e visi ts	an d	Co op era tiv e	Dis co	od eli	ori al
Sources of water and water pollution	х			х	х					Х				х
Drinking water standards, and water quality requirements	х			х	х									х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Surface and groundwater collection (Intakes and wells)	х		х	х					х
Water purification stages (Coagulation, flocculation, and sedimentation)	x		х	х			х		х
Water purification stages (filtration and disinfection)	х		х	х					х
Water storage and distribution	х		х	х					х
Sewage sources and characteristics	х		х	Х			Х		х
Planning and design of sewerage system	х		х	х					х
Design of pump stations	х		Х	Х					х
Planning and design of primary and secondary wastewater treatment units	х		х	х					х

6. Teaching and learning methods for disable students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium and high-performance students	Knowledge and skills transfer among different levels of students
4	Electronic model system for the Institution.	E. learning

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
	Midterm examination	C1	a3, b2
1		C10	d1
1		C11	a2
		C12	b2
	Semester work (quizzes, sheets, reports)	C1	a3, b2
2		C10	d1
2		C11	a2
		C12	b2
	Final tarms are significant.	C1	a3, b2
3		C2	d1
3	Final term examination	C11	a2
		C12	b2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8^{th}
2	Semester work	Continuous
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

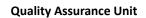
No.	Reference List
1	Course notes: Lecture notes prepared by the course coordinator. Solved examples.
2	Essential books (textbooks): • الكود المصري لأسس تصميم وتنفيذ محطات تنقية مياه الشرب والصرف الصحي ومحطات الرفع – قرار وزاري رقم 169 لسنة 1997-الطبعة الثالثة 2004.
3	Recommended books Wastewater Engineering: Treatment and Reuse (McGraw-Hill Series in Civil and Environmental Engineering)–16 May 2002-by N/A Metcalf & Eddy, Inc., George Tchobanoglous, Franklin Burton, H. David Stensel
4	1- د/محمد صادق العدوى "هندسة امداد المياه" دار صادق للنشر – كلية الهندسة جامعة القاهرة 2- د/محمد سعيد الخولى "الهندسة الصحية للمبانى " – كلية الهندسة جامعة عين شمس 3- د/محمد على على فرج "الهندسة الصحية" منشأة المعارف بالاسكندرية – كلية الهندسة جامعة الاسكندرية 4- د/احمد فاضل عشرى "امداد المدن بالمياه – تنقية مياه الشرب – معالجة المخلفات السائلة" – كلية الهندسة – قسم الاشغال العامة – جامعة المنصورة
5	Periodicals, Web sites, etc. www.awwa.org www.epa.gov www.wef.org

9. Facilities required for teaching and learning:

	Facility								
1	Lecture classroom	3	White board						
2	Seminar	4	Data show system						

10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
----	-------	------	--------------	------



Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Sources of water and water pollution	3, 7	C1	a3, b2
2	Drinking water standards, and water quality requirements	3, 7	C1, C10	a3, b2, d1
3	Surface and groundwater collection (Intakes and wells)	3, 7	C10, C11	d1, a2
4	Water purification stages (Coagulation, flocculation, and sedimentation)	3, 7	C10, C11, C12	d1, a2, b2
5	Water purification stages (filtration and disinfection)	3, 7	C10, C11, C12	d1, a2, b2
6	Water storage and distribution	3, 7	C11, C12	a2, b2
7	Sewage sources and characteristics	3, 7	C1	a3, b2
8	Planning and design of sewerage system	3, 7	C10, C11	d1, a2
9	Design of pump stations	3, 7	C11, C12	a2, b2
10	Planning and design of primary and secondary wastewater treatment units	3, 7	C11, C12	a2, b2

Course Coordinator: Assoc. Prof. Dr. Medhat Elzahar **Head of Department:** Prof. Dr. Mohamed Elkiki

Steel Structures Design (2) (CIE407)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Steel Structures Design (2)
Course Code	CIE407
Year/Level	Level 4
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	CIE402

Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	3	2	-

2. Course Aims

	W100 / W110
No.	Aims
6	Analyze data from the intended tests to manage resources creatively.
7	Achieve an optimum design of steel structures.
10	Select appropriate and sustainable technologies for construction of steel buildings.

Competencies	Learning Outcomes (LO'S)					
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	a3 Explain the basic principles of engineering in steel structures design.b3 Applying engineering basics that are relevant to the steel structures design.					
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	a1 Define, basic characteristics, properties, concepts, and techniques of structural analysis and mechanics, and properties and strength of materials of steel structures.					
C5 Practice research techniques and methods of investigation as an inherent part of learning.	d1 Search for information to engage in lifelong self-learning discipline.					
C11 Select appropriate and sustainable technologies for construction of steel buildings using either numerical techniques or physical	a1 Recognize the fundamentals of structural analysis and mechanics, and					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

measurements and/or testing by applying a full range of civil engineering concepts and techniques	properties and strength of materials of steel structures.				
of structural analysis and mechanics, and	c1 Using either numerical techniques or				
properties and strength of materials.	physical measurements and/or testing by				
	applying a full range of civil engineering				
	concepts and techniques of structural				
	analysis and mechanics, and properties and				
	strength of materials of steel structures.				
C12 Achieve an optimum design of steel structures.	b1 Achieve an optimum design of steel				
	structures.				

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
	Steel frame design:			
1	Rafter and crane girder design.	12	8	-
	Column design, single columns, built-up columns.			
2	Riveted and bolted connections.	6	4	-
3	High strength bolted connections.	6	4	-
4	Welded connections.	6	4	-
5	Base connections.	6	4	
6	Roof truss structures' applications.	3	2	-
7	Rigid frame structures' applications.	3	2	
	Total	42	28	-

5. Teaching and learning methods:

Topics	١.	On lin e lec tur	Fli pp ed cla ssr	n an d	Dis cus sio n	obl em sol vin	sto rm	Pr oje cts	Sit e visi ts	an	Co op era tiv e	Dis	od eli	b
Steel frame design: Rafter and crane girder design. Column design, single columns, built-up columns.	х			х	х									х
Riveted and bolted connections.	х			х	х									х
High strength bolted connections.	х			х	х									х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Welded connections.	х		х	х					х
Base connections.	Х		Х	Х					Х
Roof truss structures' applications.	х		х	х			х		х
Rigid frame structures' applications.	х		х	х			х		х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
	Asking small groups to do assignments each	_
2	composed of low, medium, and high-performance	among different level of students.
	students.	

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
		C1	a3, b3, c3
1	Midterm examination	C2	a1, c3
1	Whaterin examination	C11	c1
		C12	b1
	Semester work (quizzes, sheets, report)	C1	a3, b3, c3
		C2	a1, c3
2		C5	d1
		C11	a1, c1
		C12	b1
	Final term examination	C1	a3, b3, c3
3		C2	a1, c3
3		C11	a1, c1
		C12	b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8^{th}
2	Semester work	continuous evaluation
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Semester work	20%
3	Final term examination	60%
Total 100%		

8. List of References:

No.	Reference List		
	Course notes:		
1	Lecture notes prepared by the course coordinator.		
	Solved examples.		
	Essential books (textbooks):		
2	Egyptian Code of Practice for Steel Construction and Bridges (ASD), Code No. 205, HBRC,		
	2003.		
	Recommended books		
3	E. B. Machaly, "Behavior, analysis and design of structural steel element", vol. 1, 2019.		
	E. B. Machaly, "Behavior, analysis and design of steel work connections", vol. 3, 2019.		
	Periodicals, Web sites, etc.		
4	www.steelconstruction.org		
"	www.modernsteel.com		
	www.berlinsteel.com		

9. Facilities required for teaching and learning:

	8				
	Facility				
1	Seminar	3	teaching aids as interactive (smart) board		
2	discussions rooms with internet connections	4	Data Show		

10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
	Steel frame design:		C1,	a3, b3, c3
1	- Rafter and crane girder design.	6,10	C2,	a1, c3
1	- Column design, single columns, built-up columns.	0,10	C11	c1
	- Column design, single columns, bunt-up columns.		C12	b1
			C1,	c3
2	Riveted and bolted connections.	6,7	C11,	c1
			C12	b1
			C1,	c3
3	High strength bolted connections.	6,7	C11,	c1
			C12	b1
4	Welded connections.	6,7	C1,	c3

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

			C11,	c1
			C12	b1
			C1,	c3
5	Base connections.	6,7	C11,	c1
			C12	b1
	Roof truss structures' applications.	6,10	C1,	a3, b3, c3
6			C5,	d1
0			C11,	a1, c1
			C12	b1
			C1,	a3, b3, c3
7	Rigid frame structures' applications.	6,10	C5,	d1
'			C11,	a1, c1
			C12	b1

Course Coordinator: Assoc. Prof. Dr. Ashraf Elsabagh **Head of Department:** Prof. Dr. Mohamed Elkiki

Reinforced Concrete (3) (CIE408)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Reinforced Concrete (3)
Course Code	CIE408
Year/Level	Level 4
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre- request	CIE403

Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	3	2	-

2. Course Aims

No.	Aims
7	Achieve an optimum design of Reinforced Concrete.

Competencies	Learning Outcomes (LO'S)
C2 Develop and conduct appropriate simulation, analyze, and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	 a2 Define the principles, basic properties, and features of construction material, as well as their use in sustainable technologies for construction of buildings, infrastructures. b1 Conduct basic experiments to learn about the basic characteristics and features of structural analysis and mechanics, properties, and strength of materials. c3 Applying statistical analyses and objective engineering judgment to draw conclusions.
C11 Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques	 a1 Recognize the fundamentals of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology, and fluid mechanics. a2 Summarize, appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology, and fluid mechanics.	
C12 Achieve an optimum design of	b1 Achieve an optimum design of Reinforced
Reinforced Concrete.	Concrete

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Design of halls with beam girders and long column	9	6	-
2	Design of frames	9	6	-
3	Design of arches (slab and girder)	9	6	-
4	Design of trusses	6	4	-
5	Design of Vierendeel girder	6	4	-
6	Design of saw tooth roofs	3	2	-
	Total	42	28	-

5. Teaching and learning methods:

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Design of halls with beam girders and long column		х			x			х						x
Design of frames		х			х			х						х
Design of arches (slab and girder)		x			х			х						х
Design of trusses		х			х			х						х
Design of Vierendeel girder		х			х			х						х
Design of saw tooth roofs		х			х			х						х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students
4	Electronic model system for the Institution.	E. learning

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
	NACE OF THE PARTY	C2	a2
1	Mid-term examination	C11	a1
	Semester work	C2	a2
2		C12	b1
		C2	a2, c3, b1
3	Final term examination	C11	a2, c3, b1 a1, a2
		C12	b1

7.2 Evaluation Schedule:

7.2 LV	.2 Evaluation Schedule.				
No.	Evaluation Method	Weeks			
1	semester work	2 nd ,7 th , 9 th			
2	Mid Term examination	8^{th}			
3	Practical Examination	14 th			
4	Final term examination	15 th			

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights	
1	Mid-term examination	20%	
2	Semester work	20%	
3	Final-term examination	60%	
	Total 100%		

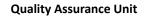
8. List of References:

No.	Reference List
1	Course notes: Are delivered during the lecture, including handout materials such as solved
	problems, design charts, tables, etc.
2	Essential books (textbooks / design codes):

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Egyptian Code for Design and Construction of Reinforced Concrete Structures 203-2001. Design Aids and Examples in Accordance with the Egyptian Code for Design and Construction of Reinforced Concrete Structures 203-2020.

9. Facilities required for teaching and learning:


No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

10. Matrix of knowledge and skills of the course:

No	Topic	Aims	Competencies	LO's
1	Design of halls with beam girders and long column	7	C2	a2, c3
	Design of mails with beam girders and long coldini		C11	a1
2	Design of frames	7	C2	a2, c3
	Design of frames		C12	b1
_		7	C11	a1
3	Design of arches (slab and girder)		C12	b1
		7	C2	a2, c3
4	Design of trusses	,	C11	a1
	565,811 61 (1 43563		C12	b1
		7	C2	b1, b2
5	Design of Vierendeel girder		C11	a1
			C12	b1
		7	C2	b1, b2
6	Design of saw tooth roofs		C11	a1
			C12	b1

Course Coordinator: Dr. Hamdy Abd Elaty **Head of Department:** Prof. Dr. Mohamed Elkiki

Environmental Management (ENG401)

1. Basic Information:

Program Title	All Programs
Department Offering the Program	Basic Science and Engineering Department
Department Responsible for the Course	Basic Science and Engineering Department
Course Title	Environmental Management
Course Code	ENG401
Year/Level	Level 4
Specialization	Major – Compulsory Course
Authorization Date of Course Specification	-
Pre-request	-

Teaching hours	Lectures	Tutorial	Practical
	3	-	-

2. Course Aims:

No.	Aims
2	Work in and manage a diverse team of professionals from various engineering disciplines, taking responsibility for own and team performance; and behave professionally and adhere to engineering ethics and standards.
3	Recognize his or her role in promoting engineering and contributing to the profession's and community's development; by appreciating the importance of the environment, both physical and natural, and working to promote sustainability concepts;

	Co	mpetencies		Learning Outcomes (LO'S)
C3	Apply	engineering	design	a2 Understand the professional ethics and impacts of
prod	cesses to	produce cost-	effective	engineering solutions on society and environment.
solu	tions that	meet specifie	d needs	
with	considera	ation for global,	cultural,	

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	 a3 Recognizes the environmental and economic impact of various industries, waste minimization, and industrial facility remediation. b1 Judge engineering decisions considering balanced costs, benefits, safety, quality, reliability, and
	environmental impact. c1 Incorporate economic, societal, global,
	environmental, and risk management factors into design.
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	 a1 Describe quality assurance systems, codes of practice, and standards, as well as health and safety regulations and environmental concerns. c1 Apply safe systems at work by taking the necessary precautions to manage hazards. c3 Utilize modern technologies.
C10 Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.	d1 Search for information to engage in lifelong self-learning discipline.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	The importance of studying environmental science – modern technology and its effect on the environment	12	1	-
2	quality of the environment and development elements	6	ı	-
3	sources of environmental pollution and method of control (air pollution – water pollution)	12	-	-
4	Solid wastes pollution — noise) — economics of environmental pollution control — legislations for the environment protection.		-	-
	Total	42	-	-

5. Teaching and learning methods:

Topics	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
--------	----------------	-------------------	-------------------------	------------	-----------------	----------------	----------	-------------	-----------------------------	-------------	-------------	----------	-----

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

The importance of studying environmental science – modern technology and its effect on the environment	x	x	x				x
Quality of the environment and development elements	х	х	x				x
Sources of environmental pollution and method of control (air pollution – water pollution	x	x	x				x
Solid wastes pollution – noise) – economics of environmental pollution control – legislations for the environment protection.	x	x	х				х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material.	Better access any time.
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different levels of students.

7. Student evaluation:

7.1 Student evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Mid Term Examination	A3, A4	a1, b1
2	Semester work (report, quizzes, presentation(A4, A10	d1, c1, c3
3	Final Term Examination	A3, A4, A10	a2, a3, a1, d1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester work	2 nd , 7 th , 9 th
2	Mid Term Examination	8^{th}

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3 Final Term Examination 15 th	
---	--

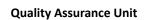
7.3 Weighting of Evaluation:

No.	evaluation method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	د زكريا طاحون , ادارة البيئة نحو الانتاج الأنظف, الهيئة المصرية العامة للكتاب,القاهرة,2018
2	محمد اسماعيل خضر ,مقدمة في علوم البيئة ,الهيئة العامة للكتاب ,القاهرة 2018

9. Facilities required for teaching and learning:


No.	Facility
1	Seminar
2	Lecture Classroom
3	White Board
4	Data Show system

10. Matrix of Competencies and LO's:

No.	Topic	Aims	Competencies	LO's
1	The importance of studying environmental science – modern technology and its effect on the environment	2, 3	C3, C10	d1, a2
2	Quality of the environment and development elements	2, 3	C3, C10, C4	d1, b1, a1
3	Sources of environmental pollution and method of control (air pollution – water pollution	2, 3	C3, C4	a3, c1
4	Solid wastes pollution – noise) – economics of environmental pollution control – legislations for the environment protection.	2, 3	C3, C4	c1, c3

Course Coordinator: Assoc. Prof. Dr. Ramadan Elkateb **Head of Department:** Assoc. Prof. Dr. Amal Bahiry

Construction Estimating and Tendering (CIE411)

1. Basic Information:

Program Title	Civil Engineering Program		
Department Offering the Program	Civil Engineering Department		
Department Responsible for the Course	Civil Engineering Department		
Course Title	Construction Estimating and Tendering		
Course Code	CIE411		
Year/Level	Level 5 – Semester 2		
Specialization	Minor – Elective Course		
Authorization Date of Course Specification	-		
Prerequisite	Complete 100 CH		

Tanahina Hawa	Lectures	Tutorial	Practical		
Teaching Hours	2	2	-		

2. Course Aims

No.	Aims							
6	Analyze data from the intended tests to manage resources creatively.							
8	Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.							
9	Deal with biddings, contracts, and financial issues including project insurance and guarantees.							

5. Competencies.	
Competencies	Learning Outcomes (LOs)
C9 Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	d2 Effectively manage tasks, time, and resources.
C13 Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.	a1 Define the plan and manage the construction process.
C14 Deal with biddings, contracts, and financial issues including project insurance and guarantees.	 a1 Define biddings, contracts, and financial issues. b1 Address biddings, contracts, and financial issues including project insurance and guarantees.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

c1 Apply biddings, contracts, and financial
issues on civil engineering projects.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Principles of Construction Cost Estimating, Methods of Detailed Cost Estimating	8	8	-
2	Quantity Takeoff	4	4	-
3	Analysis of Labor and Equipment Costs	4	4	-
4	Construction Tendering Process, Bidding and Contracting Systems for Construction Projects	8	8	-
5	Laws and Regulations Related to the Construction Industry	4	4	=
	Total	28	28	-

5. Teaching and Learning Methods:

No	Topics	Fa ce -T o- Fa ce Le ct ur e	O nli ne Le ct ur e	Fli pp ed Cl as sr oo m	Pr es en ta ti on an d M ov ie s	Di sc us si on	Pr ob le m- So lvi ng	Br ai n St or mi ng	Pr oj ec ts	Sit e Vi sit s	Se If-Le ar ni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
1	Principles of Construction Cost Estimating, Methods of Detailed Cost Estimating		\checkmark		\checkmark										
2	Quantity Takeoff	\checkmark													
3	Analysis of Labor and Equipment Costs	√					√								

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4	Construction Tendering Process, Bidding and Contracting Systems for Construction Projects	V	V					
5	Laws and Regulations Related to the Construction Industry	√	V					

6. Teaching and Learning Methods for Disabled Students:

No.	Teaching Method	Reason				
1	Presentation of The Course in Digital Material	Better Access at Any Time				
2	Wed Communication with Students	Better Communication with Certain Cases				
3	Asking Small Groups to Do Assignments; Each Composed of Low, Medium, and High-Performance Students	Knowledge and Skills Transfer Among Different Levels of Students				
4	An Electronic Model System for The Institution	E. Learning				

7. Student Evaluation:

7.1 Student Evaluation Method:

No.	Evaluation Method	Competencies	LOs		
		C9	d2		
1	Semester Works (Quizzes, Sheets, Reports)	C13 a			
		C14	a1, b1, c1		
2	Mid-Term Exam	C9	d2		
	IVIIU-TETTII EXATTI	C13	a1		
		C9	d2		
3	Final-Term Exam	C13	a1		
		C14	a1, b1, c1		

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester Works (Quizzes, Sheets, Reports)	4 th , 11 th
2	Mid-Term Exam	8 th
3	Final-Term Exam	15 th

7.3 Weighting of Evaluation:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Evaluation Method	Weights
1	Semester Works (Quizzes, Sheets, Reports)	20%
2	Mid-Term Exam	20%
3	Final-Term Exam	60%
	Total	100%

8. List of References:

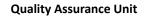
No.	Reference List									
1	Wiley-Blackwell. Code of Practice for Project Management for Construction and									
	Development. Chartered Institute of Building (Great Britain).									
2	Kerzner, Harold. Project Management Workbook. A System Approach to Planning,									
	Scheduling, and Control.									
de Marco, A. Project Management for Facility Constructions A Guide for Eng										
3	Architects.									
	Project Management Institute and Project Management Institute. A Guide to the Project									
4	Management Body of Knowledge (PMBOK Guide).									
_	Lester, Albert. Project Management, Planning, and Control. Managing Engineering,									
5	Construction, and Manufacturing Projects to PMI, APM, and BSI Standards.									
6	Vanhoucke, M. Management for Professionals Integrated Project Management and Control.									

9. Facilities Required for Teaching and Learning:

Facility							
1	Lecture Classroom	3	White Board				
2	Seminar	4	Data Show System				

10. Matrix of Knowledge and Skills:

No.	Торіс	Aims	Competencies	LOs	
1	Principles of Construction Cost Estimating,	6, 8	C9	d2	
	Methods of Detailed Cost Estimating	0, 8	C13	a1	
2	Quantity Takeoff	6, 8	C9	d2	
	Qualitity takeon	0, 8	C13	a1	
3	Analysis of Labor and Equipment Costs	6, 8	C 9	d2	
3	Analysis of Labor and Equipment Costs	0, 8	C13	a1	
4	Construction Tendering Process, Bidding and	9	C1.4	21 b1 c1	
4	Contracting Systems for Construction Projects	9	C14	a1, b1, c1	
_	Laws and Regulations Related to the	0	C14	o1 b1 o1	
5	Construction Industry	9	C14	a1, b1, c1	


Course Coordinator: Prof. Dr. Mohamed Elkiki **Head of Department:** Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Air Conditioning Systems for Building (CIE412)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Air Conditioning systems for Building
Course Code	CIE412
Year/Level	Level 4
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Prerequisite	Complete 100 h

Tanahina hawa	Lectures	Tutorial	Practical			
Teaching hours	2	2	-			

2. Course Aims

No.	Aims
4	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.
5	Communicate effectively with a variety of audiences using a variety of forms, methods, and languages; cope with academic and professional issues in a critical and creative manner; and display leadership, business administration, and entrepreneurial abilities.

Competencies	Learning Outcomes (LO'S)				
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	b1 Conduct basic experiments to learn about the basic characteristics and features of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.				
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate	b1 Judge engineering decisions considering balanced costs, benefits, safety, quality.				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

to the discipline and within the principles and contexts of sustainable design and development.	
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	a3 Define contemporary engineering technologies and their applications in relation to disciplines.
C13 Plan and manage construction processes; address construction defects, instability and quality issues;	· 1
maintain safety measures in construction and materials; and assess environmental impacts of projects.	1 ' ' ' 1

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical		
1	Psychometric and process of air	2	2	-		
2	Cooling load estimation	4	4	-		
3	Refrigeration cycles.	4	4 4			
4	Water chiller systems	4	4	-		
5	Air handling system	2	2	-		
6	Cooling towers	4	4	-		
7	Equipment selection.	2	2	-		
8	Installation, operation and maintenance of air conditioning systems	6	6	-		
	Total	28	28	-		

5. Teaching and learning methods:

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Psychometric and process of air	х	х			х									
Cooling load estimation	Х	Х			Х	Х								
Refrigeration cycles.	Х	Х		х	х	Х								
Water chiller systems	х	х		х	х						х			

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Air handling system	х	х		Х	х	х				
Cooling towers	Х	х		х	Х	Х				
Equipment selection.	х	х		х	х			х		
Installation, operation, and maintenance of air conditioning systems	х	х	х	х	х			х		

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium and high-performance students	Knowledge and skills transfer among different levels of students
4	Electronic model system for the Institution.	E-learning

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
		C2	b1
1	Midterm examination	C3	b1
		C13	c1
	Compostor world (avistor about a remort)	C3	b1
2	Semester work (quizzes, sheets, report)	C13	b1, c1
2	Final tarms avancination	C3	b1
3	Final term examination	C13	b1, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	semester work	7 th , 13 th
2	Mid Term examination	8^{th}
3	Final term examination	15 th

7.3 Weighting of Evaluation:

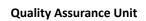
	Briting or Evaluation.	
No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Reference List
	Heat and mass transfer pk Nag, tata McGraw Hill Education private limited, New delhi- 2011
	Engineering thermodynamics on karsingh, new AGE Publisher, new delhi -2007

9. Facilities required for teaching and learning:


		Fac	ility
1	Lecture classroom	3	White board
2	Seminar	4	Data show system

10. 10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Psychometric and process of air	4	C13	b1, c1, a3
2	Cooling load estimation	3	C3, C13	b1, c1
3	Refrigeration cycles.	4	C2, C13	b1, c1
4	Water chiller systems	3	C3, C13	b1, c1
5	Air handling system	4	C2, C13	b1, c1
6	Cooling towers	3	C3, C13	b1, c1
7	Equipment selection.	4	C4, C13	b1, c1
8	Installation, operation and maintenance of air conditioning systems	3	C3, C13	b1, c1

Course Coordinator: Dr. Moataz Mostafa **Head of Department:** Prof. Dr. Mohamed Elkiki

<u>Design of Lighting Systems for Buildings</u> (CIE413)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Design of Lighting Systems for Buildings
Course Code	CIE413
Year/Level	Level 4
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre-request	Complete 100 h

Teaching hours	Lectures	Tutorial	Practical
	2	2	-

2. Course Aims:

No.	Aims
4	Use the techniques, skills, and codes of practice effectively and professionally to design
	lighting system for buildings.
	Communicate effectively with a variety of audiences using a variety of forms, methods, and
5	languages; cope with academic and professional issues in a critical and creative manner;
	and display leadership, business administration, and entrepreneurial abilities.
	Plan and manage construction processes; address construction defects, instability and
8	quality issues; maintain safety measures in construction and materials; and assess
	environmental impacts of projects.

Competencies Learning Outcomes (LO'S)

Ministry of Higher Education Higher Institute of Engineering and Technology **New Damietta**

C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	c1 Choose relevant mathematical and computer-based methodologies for problem modelling and analysis.
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	c2 Applying engineering design procedures to generate cost-effective solutions while adhering to the principles and contexts of sustainable design and development.
C6 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	c2 Acquire entrepreneurial skills.
C13 Plan and manage construction processes; address construction defects, instability and quality issues; maintain safety measures in construction and materials; and assess environmental impacts of projects.	a1 define plan and mange construction process.

4. Table of Content

No.	Topics	Lectures	Tutorial	Practical
1	Principles of lighting	2	2	-
2	lighting design for buildings which includes artificial lighting, point, line and area light sources, types and properties of luminaries, polar curves	6	6	-
3	design methods and calculations, glare index	4	4	-
4	lighting design standard	4	4	-
5	luminaire heat recovery system and lighting energy management	6	6	-
6	hybrid lighting	2	2	-
7	daylighting of buildings,	2	2	-
8	effect of climate on lighting	2	2	-
	Total	28	28	-

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

5 Teaching and learning methods:

. Teaching and learning methods:														
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Principles of lighting		Х			Х	Х								х
lighting design for buildings which includes artificial lighting, point, line and area light sources, types and properties of luminaries, polar curves		х			Х	X								х
design methods and calculations, glare index		х			х	х								х
lighting design standard		х			Х	Х								х
luminaire heat recovery system and lighting energy management		х			х	х								х
hybrid lighting		Х			Х	Х								Х
daylighting of buildings,		Х			Х	Х								х
effect of climate on lighting		х			х	х								х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different level of students.

7. Student evaluation:

7.1 Student evaluation method:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C2	c1
1 Wildterm examination		C13	a1
2	Competer work (quizzos chaote report)	C6	c2
2 Semester work (quizzes, sheets, report)	Semester work (quizzes, sheets, report)	C13	a1
3	Final tarms avancination	C3	c2
	Final term examination	C13	a1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks				
1	Semester work	2 nd ,7 th , 9 th				
2	Mid Term examination	8^{th}				
3	Final term examination	15^{th}				

7.3 Weighting of Evaluation:

No.	Evaluation method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

8. List of References:

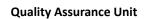
No.	Reference List			
1	الكود المصري لاسس تصميم وشروط تنفيذ اعمال اناره الطرق والانفاق كود(308/2)- المركز القومي لبحوث الاسكان والبناء – وزاره الاسكان والمرافق والتنميه العمرانيه 2012			
	الاضاءه الطبيعيه في ضوء محددات قانون البناء في مصر-د.خالد محمد الحديدي – كليه هندسه شبرا – جامعه بنها-			
	2010			

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Principles of lighting	4	C2	c1
2	lighting design for buildings which includes artificial lighting, point, line and area light sources, types and properties of luminaries, polar curves	4	C3	c2


Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3	design methods and calculations, glare index	4	C13	a1
4	lighting design standard	4	C6	c2
5	luminaire heat recovery system and lighting energy management	4	C6	c2
6	hybrid lighting	4	C13	a1
7	daylighting of buildings,	4	C13	a1
8	effect of climate on lighting	4	C13	a1

Course Coordinator: Dr. Rabab Reda

Head of Department: Prof. Dr. Mohamed Elkiki

<u>Productivity Enhancement Methods</u> (CIE414)

1. Basic Information

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Productivity Enhancement Methods
Course Code	CIE414
Year/Level	Level 4
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Prerequisite	Complete 100 CH

Too shing House	Lectures	Tutorial	Practical	
Teaching Hours	2	2	-	

2. Course Aims

No.	Aims
	Work in and manage a diverse team of professionals from various engineering disciplines,
2	taking responsibility for own and team performance, behaving professionally, and adhering
	to engineering ethics and standards.
	Communicate effectively with various audiences using various forms, methods, and
5	languages; cope with academic and professional issues critically and creatively; and display
	leadership, business administration, and entrepreneurial abilities.
6	Analyze data from the intended tests to manage resources creatively.
	Plan and manage construction processes; address construction defects, instability, and
8	quality issues; maintain safety measures in construction and materials; and assess the
	environmental impacts of projects.

Competencies	Learning Outcomes (LOs)
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline, and within the principles and contexts of sustainable design and development.	b1 Judge engineering decisions considering balanced costs, benefits, safety, quality, reliability, and environmental impact.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	b1 Create methodical approaches when dealing with new and advancing technology. c1 Apply safe systems at work by taking the necessary precautions to manage hazards. c3 Utilize modern technologies.
C7 Function efficiently as an individual and as a member of multi-disciplinary and multicultural teams.	 d1 Collaborate effectively within a multidisciplinary team. d2 Work in stressful environments and within constraints. d3 Motivate individuals.
C9 Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	d2 Effectively manage tasks, time, and resources.

4. Course Contents:

No	Topics	Lecture	Tutorial	Practical
1	Identification of Bottlenecks	6	6	-
2	Impact of Human Performance on Productivity	6	6	-
3	Effect of the Interaction Between Technological Advances and Human Capabilities on Performance and Productivity	8	8	-
4	Cost Reduction and Productivity Improvement Programs	8	8	-
	Total	28	28	-

5. Teaching and Learning Methods:

No .	Topics	Fa ce -T o- Fa ce Le ct ur e	O nli ne Le ct ur e	Fli pp ed Cl as sr oo m	Pr es en ta ti on an d M ov ie s	Di sc us si on	Pr ob le m- So Ivi ng	Br ai n St or mi ng	Pr oj ec ts	Sit e Vi sit s	Se If-Le ar ni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
1	Identification of Bottlenecks	V				V									

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Impact of Human Performance on Productivity		V	V					
3	Effect of the Interaction Between Technological Advances and Human Capabilities on Performance and Productivity	√			√				
4	Cost Reduction and Productivity Improvement Programs	1				√			

6. Teaching and Learning Methods for Disabled Students:

No	Teaching Method	Reason			
1	Presentation of The Course in Digital Material	Better Access at Any Time			
2	Wed Communication with Students	Better Communication with Certain Cases			
3	Asking Small Groups to Do Assignments; Each Composed of Low, Medium, and High-Performance Students	Knowledge and Skills Transfer Among Different Levels of Students			
4	An Electronic Model System for The Institution	E. Learning			

7. Student Evaluation:

7.1 Student Evaluation Method:

No.	Evaluation Method	Competencies	LOs
		C3	b1
1	 Semester Works (Quizzes, Sheets, Reports)	C4	b1, c1, c3
*	Semester Works (Quizzes, Sheets, Reports)	C7	d1, d2, d3
		C 9	d2
2	 Mid-Term Exam	C7	d1, d2, d3
	Wild-Territ Exam	C 9	d2
		C3	b1
3	Final-Term Exam	C4	b1, c1, c3
3	FIIIdi-161111 EXd111 	C7	d1, d2, d3
		C 9	d2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester Works (Quizzes, Sheets, Reports)	4 th , 11 th
2	Mid-Term Exam	8 th
3	Final-Term Exam	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Semester Works (Quizzes, Sheets, Reports)	20%
2	Mid-Term Exam	20%
3	Final-Term Exam	60%
	Total	100%

8. List of References:

No	Reference List
1	Wiley-Blackwell. Code of Practice for Project Management for Construction and Development. Chartered Institute of Building (Great Britain).
2	Kerzner, Harold. Project Management Workbook. A System Approach to Planning, Scheduling, and Control.
3	de Marco, A. Project Management for Facility Constructions A Guide for Engineers, and Architects.
4	Project Management Institute and Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK Guide).
5	Lester, Albert. Project Management, Planning, and Control. Managing Engineering, Construction, and Manufacturing Projects to PMI, APM, and BSI Standards.
6	Vanhoucke, M. Management for Professionals Integrated Project Management and Control.

9. Facilities Required for Teaching and Learning:

Fa	Facility								
1	Lecture Classroom	3	White Board						
2	Seminar	4	Data Show System						

10. Matrix of Knowledge and Skills:

No	Topic	Aims	Competencies	LOs
1	Identification of Bottlenecks	6, 8	C9	d2
2	Impact of Human Performance on Productivity	2, 5	C7	d1, d2, d3
	Effect of the Interaction Between Technological		C4	b1, c1, c3
3	Advances and Human Capabilities on	2, 5	C7	d1, d2, d3
	Performance and Productivity		C 9	d2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4	Cost Reduction and Productivity Improvement Programs	6, 8	C3 C4 C9	b1 b1, c1, c3 d2
---	--	------	----------------	------------------------

Course Coordinator: Prof. Dr. Mohamed Elkiki Head of Department: Prof. Dr. Mohamed Elkiki

Quality Assurance Unit

Quality Assurance and Engineering Reliability (CIE415)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Quality Assurance and Engineering Reliability
Course Code	CIE415
Year/Level	Level 4
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Prerequisite	Complete 100 CH

To asking House	Lectures	Tutorial	Practical
Teaching Hours	2	2	-

2. Course Aims:

No.	Aims
1	Master a broad range of engineering knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve engineering problems of varying complexity and variation.
8	Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.

Competencies	Learning Outcomes (LOs)				
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline, and within the principles and contexts	 a3 Recognizes the various construction defects, instability, and quality issues and assesses the environmental impacts of projects. b1 Judge engineering decisions considering balanced costs, benefits, safety, quality, 				
of sustainable design and development.	reliability, and environmental impact.				
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	of practice, standards, health and safety				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C13 Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.

b1 Address construction defects, instability, and quality issues.

4. Course Contents:

No	Topics	Lectures	Tutorial	Practical
1	Reliability of Parallel and Serial Engineering Systems	6	6	-
2	Life Testing	6	6	=
3	Impact of Reliability on the Design Process in Engineering Fields Such as Mechanical, Electrical and Structural Engineering	8	8	-
4	Studies the Effect of Equipment Reliability on Product Quality	8	8	-
	Total	28	28	-

5. Teaching and Learning Methods:

No	Topics	Fa ce -T o- Fa ce Le ct ur e	O nli ne Le ct ur e	Fli pp ed Cl as sr oo m	Pr es en ta ti on an d M ov ie s	Di sc us si on	Pr ob le m- So Ivi ng	Br ai n St or mi ng	Pr oj ec ts	Sit e Vi sit s	Se If-Le ar ni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
1	Reliability of Parallel and Serial Engineering Systems	~			√										
2	Life Testing					$\sqrt{}$									
3	Impact of Reliability on the Design Process in Engineering Fields Such as Mechanical,	√				V									

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Electrical and Structural Engineering								
4	Studies the Effect of Equipment Reliability on Product Quality	√			√				

6. Teaching and Learning Methods for Disabled Students:

No	Teaching Method	Reason
1	Presentation of The Course in Digital Material	Better Access at Any Time
2	Wed Communication with Students	Better Communication with Certain Cases
3	Asking Small Groups to Do Assignments; Each Composed of Low, Medium, and High-Performance Students	Knowledge and Skills Transfer Among Different Levels of Students
4	An Electronic Model System for The Institution	E. Learning

7. Student Evaluation:

7.1 Student Evaluation Method:

No.	Evaluation Method	Competencies	LOs
		C3	a3, b1
1	Semester Works (Quizzes, Sheets, Reports)	C4	a1, c4
		C13	b1
2	Mid-Term Exam	C4	a1, c4
	iviiu- lettii Exatti	C13	b1
		C3	a3, b1
3	Final-Term Exam	C4	a1, c4
		C13	b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester Works (Quizzes, Sheets, Reports)	4 th , 11 th
2	Mid-Term Exam	8 th
3	Final-Term Exam	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Semester Works (Quizzes, Sheets, Reports)	20%
2	Mid-Term Exam	20%
3	Final-Term Exam	60%
Total		100%

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

8. List of References:

No	Reference List						
1	Wiley-Blackwell. Code of Practice for Project Management for Construction and						
	Development. Chartered Institute of Building (Great Britain).						
2	Kerzner, Harold. Project Management Workbook. A System Approach to Planning,						
	Scheduling, and Control.						
de Marco, A. Project Management for Facility Constructions A Guide for Engineers,							
3	Architects.						
	Project Management Institute and Project Management Institute. A Guide to the Project						
4	Management Body of Knowledge (PMBOK Guide).						
5	Lester, Albert. Project Management, Planning, and Control. Managing Engineering,						
	Construction, and Manufacturing Projects to PMI, APM, and BSI Standards.						
6	Vanhoucke, M. Management for Professionals Integrated Project Management and Control.						

9. Facilities Required for Teaching and Learning:

Fa	Facility								
1	Lecture Classroom	3	White Board						
2	Seminar	4	Data Show System						

10. Matrix of Knowledge and Skills:

No	Topic	Aims	Competencies	LOs	
1	Reliability of Parallel and Serial Engineering Systems	1, 8	C4 C13	a1, c4 b1	
2	Life Testing	1, 8	C4 C13	a1, c4 b1	
3	Impact of Reliability on the Design Process in Engineering Fields Such as Mechanical, Electrical and Structural Engineering	1, 8	C3 C4 C13	a3, b1 a1, c4 b1	
4	Studies the Effect of Equipment Reliability on Product Quality	1, 8	C3 C4 C13	a3, b1 a1, c4 b1	

Course Coordinator: Prof. Dr. Mohamed Elkiki **Head of Department:** Prof. Dr. Mohamed Elkiki

Quality Control (CIE416)

1. Basic Information:

Program Title	Civil Engineering Program				
Department Offering the Program	Civil Engineering Department				
Department Responsible for the Course	Civil Engineering Department				
Course Title	Quality Control				
Course Code	CIE416				
Year/Level	Level 4				
Specialization	Minor – Elective Course				
Authorization Date of Course Specification	-				
Prerequisite	Complete 100 CH				

To a shine Herry	Lectures	Tutorial	Practical
Teaching Hours	2	2	=

2. Course Aims:

No.	Aims
1	Master a broad range of engineering knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve engineering problems of varying complexity and variation.
8	Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.

Competencies	Learning Outcomes (LOs)
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects	
as appropriate to the discipline, and within	

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

the principles and contexts of sustainable design and development.	b1 Judge engineering decisions considering balanced costs, benefits, safety, quality, reliability, and environmental impact.					
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	safety regulations, and environmental concerns					
C13 Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.	b1 Address construction defects, instability, and quality issues.					

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Design of Quality Control Systems	4	4	-
2	Quality Methods for Establishing Product Specifications	4	4	-
3	Process Control	4	4	-
4	Variables and Attributes Charts, Acceptance Sampling	6	6	-
5	Operating Characteristics Curves, and Process Capabilities	6	6	-
6	QC Software	4	4	-
	Total	28	28	-

5. Teaching and Learning Methods:

<u> 5. It</u>	acming and Learning		 												
No	Topics	Fa ce -T o- Fa ce Le ct ur e	O nli ne Le ct ur e	Fli pp ed Cl as sr oo m	Pr es en ta ti on an d M ov ie s	Di sc us si on	Pr ob le m- So Ivi ng	Br ai n St or mi ng	Pr oj ec ts	Sit e Vi sit s	Se If-Le ar ni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
1	Design of Quality Control Systems	√					$\sqrt{}$								

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Quality Methods for Establishing Product Specifications		V		V					
3	Process Control									
4	Variables and Attributes Charts, Acceptance Sampling	~		V						
5	Operating Characteristics Curves, and Process Capabilities				V	V				
6	QC Software									

6. Teaching and Learning Methods for Disabled Students:

No.	Teaching Method	Reason			
1	Presentation of The Course in Digital Material	Better Access at Any Time			
2	Wed Communication with Students	Better Communication with Certain Cases			
3	Asking Small Groups to Do Assignments; Each Composed of Low, Medium, and High-Performance Students	Knowledge and Skills Transfer Among Different Levels of Students			
4	An Electronic Model System for The Institution	E. Learning			

7. Student Evaluation:

7.1 Student Evaluation Method:

No.	Evaluation Method	Competencies	LOs
		C3	a3, b1
1	Semester Works (Quizzes, Sheets, Reports)	C4	a1, c4
		C13	b1
2	Mid-Term Exam	C3	a3, b1
		C4	a1, c4
		C3	a3, b1
3	Final-Term Exam	C4	a1, c4
		C13	b1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester Works (Quizzes, Sheets, Reports)	4 th , 11 th
2	Mid-Term Exam	8 th
3	Final-Term Exam	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Semester Works (Quizzes, Sheets, Reports)	20%
2	Mid-Term Exam	20%
3	Final-Term Exam	60%
	Total	100%

8. List of References:

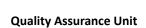
No.	Reference List
1	Wiley-Blackwell. Code of Practice for Project Management for Construction and
	Development. Chartered Institute of Building (Great Britain).
2	Kerzner, Harold. Project Management Workbook. A System Approach to Planning,
	Scheduling, and Control.
2	de Marco, A. Project Management for Facility Constructions A Guide for Engineers, and
3	Architects.
4	Project Management Institute and Project Management Institute. A Guide to the Project
4	Management Body of Knowledge (PMBOK Guide).
_	Lester, Albert. Project Management, Planning, and Control. Managing Engineering,
5	Construction, and Manufacturing Projects to PMI, APM, and BSI Standards.
6	Vanhoucke, M. Management for Professionals Integrated Project Management and Control.

9. Facilities Required for Teaching and Learning:

<u> </u>	radinates required for readining and Ecurining.					
	Faci	lity				
1	Lecture Classroom	3	White Board			
2	Seminar	4	Data Show System			

10. Matrix of Knowledge and Skills:

No.	Topic	Aims	Competencies	LOs
4	Design of Quality Control Systems	1 0	C3	a3, b1
+	Design of Quality Control Systems	1, 8	C4	a1, c4
2	Quality Methods for Establishing Product Specifications	1, 8	C3	a3, b1
3	Process Control	1, 8	C4	a1, c4
	Variables and Attributes Charts.		C3	a3, b1
4	Variables and Attributes Charts, Acceptance Sampling	1, 8	C4	a1, c4
	Acceptance Sampling		C13	b1



Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

5	Operating Characteristics Curves, and Process Capabilities	1, 8	C3 C4 C13	a3, b1 a1, c4 b1
6	QC Software	1, 8	C3 C4	a3, b1 a1, c4
	QC Software	1, 0	C13	b1

Course Coordinator: Prof. Dr. Mohamed Elkiki Head of Department: Prof. Dr. Mohamed Elkiki

Reliability of Structures (CIE417)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Reliability of Structures
Course Code	CIE417
Year/Level	Level 4
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre- request	Complete 100 h

To asking house	Lectures	Tutorial	Practical	
Teaching hours	2	2	-	

2. Course Aims

No.	Aims
1	The ability to apply probability theories and hypothesis testing in analytic critical and systemic thinking to solve engineering problems of varying complexity and variation.
8	Plan and manage construction processes; address construction defects, instability and quality issues; maintain safety measures in construction and materials; and assess environmental impacts of projects.

Competencies	Learning Outcomes (LO'S)		
C3 Apply engineering design processes to	a1 Learn the general principles of Reliability of		
produce cost-effective solutions that meet	Structures.		
specified needs with consideration for global,	a2 Understand the professional ethics and		
cultural, social, economic, environmental,	impacts of engineering solutions on society and		
ethical, and other aspects as appropriate to the	environment.		
discipline and within the principles and	c1 Incorporate economic, societal, global,		
contexts of sustainable design and	environmental, and risk management factors		
development.	into design.		
CA Utiliza contemporary technologies, codes of	a1 Describe quality assurance systems, codes of		
C4 Utilize contemporary technologies, codes of	practice, and standards, as well as health and		
practice and standards, quality guidelines,	safety regulations and environmental concerns.		
health and safety requirements, environmental	c1 Apply safe systems at work by taking the		
issues, and risk management principles.	necessary precautions to manage hazards.		

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C12 Achieve an optimum design of Reinforced	b1 Achieve an optimum design of Reinforced
Concrete.	Concrete

4. Course Contents:

No.	No. Topics		Tutorial	Practical
1	Fundamental concepts related to structural reliability,			
	safety measures, load models, resistance models, system	14	14	-
	reliability			
2	optimum safety levels, and optimization of design codes	14	14	-
	Total		28	-

5. Teaching and learning methods:

No.	Teaching Methods	
1	Face-to-Face Lecture	
2	Discussion sessions	
3	Information collection from different sources	
4	Research assignment	
5	Online Lecture	
6	Problem solving	
7	Brain storming	
8	Site visits	
9	Self-learning and Research	

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason	
1	Presentation of the course in digital material	Better access any time	
2	Wed communication with students	Better communication with certain cases	
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer amon different levels of students	
4	Electronic model system for the Institution.	E. learning	

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's	
1	Midterm examination	C3	a1, a2	
2	Semester work (quizzes, sheets, report)	C3	a1, a2, c2	

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

		C4 C9	a1, c1 d 2
3	Final term examination	C4 C12	a1 b1

7.2 Evaluation Schedule:

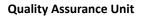
No.	Evaluation Method	Weeks
1	semester work	all
2	Mid Term examination	8^{th}
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights		
1	Midterm examination	20%		
2	Semester work	20%		
3	Final term examination	60%		
	Total 100%			

8. List of References:

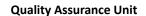
No.	Reference List					
	Essential books (textbooks / design codes):					
1	Egyptian Code for Design and Construction of Reinforced Concrete Structures 203-2010.					
1	Design Aids and Examples in Accordance with the Egyptian Code for Design and					
	Construction of Reinforced Concrete Structures 203-2012.					


9. Facilities required for teaching and learning:

	Facility				
1	Lecture classroom	3	White board		
2	Seminar	4	Data show system		

10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
	Fundamental concepts related to structural		C3	a1, a2, c 1
1	reliability, safety measures, load models, resistance	1	C4	a1, c1
	models, system reliability		C 9	d2
	antimum safety levels and antimization of design		C3	a1, a2, c 1
2	optimum safety levels, and optimization of design	1	C4	a1, c1
	codes		C 9	d2



Course Coordinator: Dr. Nesreen Elawadly **Head of Department:** Prof. Dr. Mohamed Elkiki

Risk Management and Structures Safety (CIE418)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Risk Management and Structures Safety
Course Code	CIE418
Year/Level	Level 4
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Prerequisite	Complete 100 CH

To asking Harris	Lectures	Tutorial	Practical
Teaching Hours	2	2	-

2. Course Aims:

No.	Aims
1	Master a broad range of engineering knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve engineering problems of varying complexity and variation.
8	Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.

Competencies	Learning Outcomes (LOs)
C3 Apply engineering design	a3 Recognizes the various construction defects,
processes to produce cost-effective	motability, and quality looded and assesses the
solutions that meet specified needs	environmental impacts of projects.
with consideration for global, cultural, social, economic,	b1 Judge engineering decisions considering balanced
cultural, social, economic, environmental, ethical, and other	costs, benefits, safety, quality, reliability, and
aspects as appropriate to the	environmental impact.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

discipline, and within the principles and contexts of sustainable design and development.	c1 Incorporate economic, societal, global, environmental, and risk management factors into design.
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	 a1 Describe quality assurance systems, codes of practice, standards, health and safety regulations, and environmental concerns. c1 Apply safe systems at work by taking the necessary precautions to manage hazards. c4 Apply quality assurance procedures and follow codes and standards.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Principles and Practice Regarding Safety in Building	4	4	-
2	Accidental Prevention and Safety Control	4	4	-
3	Fire Control, and Fire Resistance of Building Materials	8	8	-
4	Safety Provisions for Fire and Other Hazards in Building, Safety Standards and Codes	8	8	1
5	Governmental Regulations and Inspection Procedures	4	4	-
	Total	28	28	-

5. Teaching and Learning Methods:

No ·	Topics	Fa ce -T o- Fa ce Le ct ur e	O nli ne Le ct ur e	Fli pp ed Cl as sr oo m	Pr es en ta ti on an d M ov ie s	Di sc us si on	Pr ob le m- So Ivi ng	Br ai n St or mi ng	Pr oj ec ts	Sit e Vi sit s	Se If- Le ar ni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
1	Principles and Practice Regarding Safety in Building	√			√										

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Accidental Prevention and Safety Control		√		√					
3	Fire Control, and Fire Resistance of Building Materials	$\sqrt{}$			\checkmark					
4	Safety Provisions for Fire and Other Hazards in Building, Safety Standards and Codes	V		V						
5	Governmental Regulations and Inspection Procedures	V			V					

6. Teaching and Learning Methods for Disabled Students:

No.	Teaching Method	Reason
1	Presentation of The Course in Digital Material	Better Access at Any Time
2	Wed Communication with Students	Better Communication with Certain Cases
3	Asking Small Groups to Do Assignments; Each Composed of Low, Medium, and High-Performance Students	Knowledge and Skills Transfer Among Different Levels of Students
4	An Electronic Model System for The Institution	E. Learning

7. Student Evaluation:

7.1 Student Evaluation Method:

No.	Evaluation Method	Competencies	LOs
1	Semester Works (Quizzes, Sheets, Reports)	C3	a3, b1, c1
	Serilester Works (Quizzes, Sheets, Reports)	C4	a1, c1, c4
_	Mid Torm Evam	C3	a3, b1, c1
2	Mid-Term Exam	C4	a1, c1, c4
2	Final Torm From	C3	a3, b1, c1
3	Final-Term Exam	C4	a1, c1, c4

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester Works (Quizzes, Sheets, Reports)	4 th , 11 th
2	Mid-Term Exam	8 th
3	Final-Term Exam	15 th

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Semester Works (Quizzes, Sheets, Reports)	20%
2	Mid-Term Exam	20%
3	Final-Term Exam	60%
	Total	100%

8. List of References:

No.	Reference List									
1	Wiley-Blackwell. Code of Practice for Project Management for Construction and									
	Development. Chartered Institute of Building (Great Britain).									
2	Kerzner, Harold. Project Management Workbook. A System Approach to Planning,									
	Scheduling, and Control.									
3	de Marco, A. Project Management for Facility Constructions A Guide for Engineers, and									
	Architects.									
4	Project Management Institute and Project Management Institute. A Guide to the Project									
4	Management Body of Knowledge (PMBOK Guide).									
_	Lester, Albert. Project Management, Planning, and Control. Managing Engineering,									
5	Construction, and Manufacturing Projects to PMI, APM, and BSI Standards.									
6	Vanhoucke, M. Management for Professionals Integrated Project Management and Control.									

9. Facilities Required for Teaching and Learning:

	Facility							
1	Lecture Classroom	3	White Board					
2	Seminar	4	Data Show System					

10. Matrix of Knowledge and Skills:

No.	Topic	Aims	Competencies	LOs
1	Principles and Practice Regarding	1, 8	C3	a3, b1, c1
	Safety in Building	1, 0	C4	a1, c1, c4
2	Accidental Prevention and Safety	1 0	C3	a3, b1, c1
	Control	1,8	C4	a1, c1, c4
,	Fire Control, and Fire Resistance of	1 0	C3	a3, b1, c1
3	Building Materials	1, 8 C4	C4	a1, c1, c4
	Safety Provisions for Fire and Other		C3	a3, b1, c1
4	Hazards in Building, Safety	1, 8	C4	a1, c1, c4
	Standards and Codes		C4	a1, C1, C4
5	Governmental Regulations and	1, 8	C3	a3, b1, c1
	Inspection Procedures	1, 0	C4	a1, c1, c4

Course Coordinator: Prof. Dr. Mohamed Elkiki Head of Department: Prof. Dr. Mohamed Elkiki

Soil Mechanics and Foundation (CIE501)

1. Basic Information:

Program Title	Civil Engineering Program		
Department Offering the Program	Civil Engineering Department		
Department Responsible for the Course	Civil Engineering Department		
Course Title	Soil Mechanics and Foundation		
Course Code	CIE501		
Year/Level	Level 5		
Specialization	Major		
Authorization Date of Course Specification	-		
Pre- request	CIE404		

To a delication of	Lectures	Tutorial	Practical		
Teaching hours	2	2	-		

2. Course Aims

No.	Aims
7	Achieve an optimum design of foundations and earth retaining structures.
10	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies

Competencies	Learning Outcomes (LO'S)				
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	 a1 Describe the relevant mathematical principles and theories in the discipline. a2 Explain the scientific principles and theories that apply to the topic. a3 Explain the basic principles of soil mechanics. b2 Using scientific concepts and theories that are relevant to soil mechanics and foundation. 				
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	 a2 Define the principles, basic properties, and features of soil mechanics and foundation and use the sustainable technologies. b3 Analyze and interpret data 				
C10 Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	d1 Search for information to engage in lifelong self-learning discipline.				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	da Bufasta all many the
	d2 Professionally merge the engineering
	fundamentals, understanding, and feedback to
	improve design, products and/or services.
c11 Select appropriate and sustainable technologies for construction of buildings, infrastructures and water structures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.	 a1 Recognize the fundamentals of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology, and fluid mechanics. a2 Summarize, appropriate and sustainable technologies for soil mechanics.
C12 Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.	b2 Achieve an optimum design of soil mechanics and retaining structures.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Stresses in soil mass	4	4	-
2	Consolidation of soil	4	4	-
3	Settlement and contact pressure	4	4	-
4	Lateral earth pressure	4	4	-
5	Slope stability	4	4	-
6	Retaining walls – sheet piles	4	4	-
7	Soil bearing capacity	4	4	-
	Total	28	28	-

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	Fa ce to fa ce lec tu re	O nli ne lec tu re	Fli pp ed cla ssr oo m	Pr es en tat io n an d m ov ies	Di sc us sio n	Pr ob le m sol vi ng	Br ai n st or mi ng	Pr oj ec ts	Sit e vis its	Se If-I ea rni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
Stresses in soil mass	х	х		Х	Х	х								
Consolidation of soil	х	х		Х	Х	Х								
Settlement and contact pressure	х	х		х	х	х				х				
Lateral earth pressure	х	х		Х	Х	Х								
Slope stability	х	х		Х	Х	Х				Х				
Retaining walls – sheet piles	х	х		Х	Х	Х								
Soil bearing capacity	х	х		Х	Х	Х								

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason				
1	Presentation of the course in digital material	Better access any time				
2	Wed communication with students	Better communication with certain cases				
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	i knowledge and skills transfer among i				
4	Electronic model system for the Institution.	E. learning				

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation method	Competencies	LO's		
		C1	a1,a2,a3,b2		
1	Midterm examination	C2	a2,a3		
+	Whaterin examination	C11	a1, a2		
		C12	b2		
2	Semester work (quizzes, sheets, report)	C10	d1, d2		

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3	Final term examination	C1 C2 C11	a1,a2,a3,b2 a2,a3 a1, a2
		C12	b2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8th
2	Semester work	continuous evaluation
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

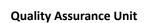
No.	Reference List
	Course notes: Lecture notes prepared by the course coordinator +Solved examples.
2	Das, B., M. (2017), "Principles of geotechnical Engineering " Eighth Edition, CENGAGE Learning,
3	Knappett, J.A. and Craige R. F. (2012), "Craig's Soil Mechanics" Eighth Edition, Spon Press.
4	Essential books (textbooks): Egyptian Code of Practice for Soil Mechanics and Foundations (2002)

9. Facilities required for teaching and learning:

Facility				
1	Lecture classroom	3	White board	
2	Seminar	4	Data show system	

10. Matrix of knowledge and skills of the course:

N	Topic	Aims	Competencies	LO's
0				
1	Stresses in soil mass	4, 7,10	C1	a3, b2
2	Consolidation of soil	4, 7,10	C11	a2


Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3	Settlement and contact pressure	4, 7,10	C11	a2
			C2	a2
4	Lateral earth pressure	4, 7,10	C11	a2
			C12	b2
5	Slope stability	4, 7,10	C1	a3, b2
			C10	d1, d2
			C2	a2
7	Retaining walls – sheet piles	4, 7,10	C11	a2
			C12	b2
8	Soil bearing capacity	4, 7,10	C11	a2

Course Coordinator: Dr. Hany Hashish

Head of Department: Prof. Dr. Mohamed Elkiki

Highway and Airport Engineering (CIE502)

1. Basic Information:

Program Title	Civil Engineering Program	
Department Offering the Program	Civil Engineering Department	
Department Responsible for the Course	Civil Engineering Department	
Course Title	Highway and Airport Engineering	
Course Code	CIE502	
Year/Level	Level 5	
Specialization	Major	
Authorization Date of Course Specification	-	
Pre- request	CIE308	

Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims

No.	Aims			
4	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong			
	learning.			
7	Achieve an optimum design of Roadways and Airports.			
	Select appropriate and sustainable technologies for construction of buildings,			
10	infrastructures and water structures; using modern techniques, experiment measurements,			
10	and testing by applying a full range of civil engineering fields such as properties and			
	strength of soil materials, surveying.			

Competencies	Learning Outcomes (LO'S)
experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical	 a2 Define the principles and basic highway's structure materials and use the sustainable technologies. b2 Conduct basic experiments to learn about highways structural materials and surveying for geometric design or other emerging field relevant to the discipline. b3 Analyze and interpret data.
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global,	specific to soil materials and highways structures using

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

cultural, social, economic, environmental, ethical, and other	a3 Recognizes the various pavement construction defects.
aspects as appropriate to the discipline and within the principles and contexts of sustainable design	b1 Judge engineering decisions considering balanced quality of pavement,
and development.	
C6 Plan, supervise and monitor	a1 Show the appropriate and sustainable
implementation of highways	technologies for construction of highways and
engineering projects	airports,
C11 Select appropriate and sustainable	a2 Summarize, appropriate and sustainable technologies
technologies for road construction	for highways construction
C12 Ashious as autinous desire	b2 Achieve an optimum design of works for highway
C12 Achieve an optimum design	alignment and pavement and or any other emerging field
Roadways and Airports,	relevant to the discipline.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Basic design control	2	2	-
2	Geometric design of highways (sight distance, intersection, alignment, vertical curves	2	2	-
3	Soils and materials, classification, stabilization, design of flexible and rigid pavement, highway drainage	2	2	-
4	Introduction to Airport Engineering	2	2	-
5	Aircraft characteristics	2	2	-
6	Air traffic control and capacity	2	2	-
7	Airport configuration	2	2	-
8	Design of the landing area	4	4	-
9	Airport terminals	4	4	-
10	Design of airport pavements, landing, wind rose, airport land scape, terminals, capacity, control	4	4	-
11	Lighting and markings	2	2	-
	Total	28	28	-

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	Lecture	ture	moo.	movies	ion	lving	ning	cts	sits	Research	tive	ring	ing	qe
	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	1
Basic design control		Х			Х	Х								х
Geometric design of highways		х			х	х								х
Soils and materials		Х			х	Х								х
Introduction to Airport Engineering		х			х	х								х
Aircraft characteristics		х			х	Х								х
Air traffic control and capacity		х			х	х								х
Airport configuration		х			Х	Х								х
Design of the landing area		х			х	х								х
Airport terminals		х			х	Х								х
Design of airport pavements		х			х	х								х
Lighting and markings		х			х	х								х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason				
1	Presentation of the course in digital material	Better access any time				
2	Wed communication with students	Better communication with certain cases				
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	I KNAWIAAGA ANA SKIIIS TRANSTAR AMANGI				
4	Electronic model system for the Institution.	E. learning				

7. Student Evaluation:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C2 C12	a2, b2 b2
2	Semester work (quizzes, sheets, report)	C2	a2 c3
		C2	a2, b2, c3
3	Final term examination	C11	a2
		C12	b2

7.2 Evaluation Schedule:

No	Evaluation Method	Weeks
1	Midterm examination	8th
2	Semester work	7th - 9th
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	No. Evaluation Method Weights			
1	Midterm examination	20%		
2	Semester work	20%		
3	3 Final term examination 60%			
	Total 100%			

8. List of References:

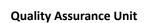
No.	Reference List
1	Materials for Civil and Construction Engineers, Mamlouk and Zaniwski, ISBN:0-13147714-5, 2016
2	Egyptian Code of Practice for Urban and Rural Roads, 2018
3	Huang, S. C., and Di Benedetto, H. (Eds.). (2015). Advances in asphalt materials: Road and pavement construction. Wood head Publishing.
4	Papagiannakis, A. T., & Masad, E. A. (2020). Pavement design and materials. John Wiley & Sons.

9. Facilities required for teaching and learning:

	Facility						
1	Lecture classroom	3	White board				
2	Seminar	4	Data show system				

10. Matrix of knowledge and skills of the course:

No Topic	Aims	Competencies	LO's
----------	------	--------------	------


Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Basic design control	1, 7	C2	a2
2	Geometric design of highways	1, 7	C2, C6	a1, a2 c3
3	Soils and materials	1,7	C2 C12	a2, b2 b2
4	Introduction to Airport Engineering	1, 7	C2 C12	a2 b2
5	Aircraft characteristics	1, 7	C2 C12	a2, c3 b2
6	Air traffic control and capacity	1, 7	C2 C11	a2, c3 a2
7	Airport configuration	1, 7	C2	a2 b3 c3
8	Design of the landing area	1, 7	C2 C6	a2 a1 b2
9	Airport terminals	1, 7	C2 C11 C12	a2, b2, c3 a2 b2
10	Design of airport pavements	1, 7	C2	a2, b2
11	Lighting and markings	1, 7	C2	a2, b2

Course Coordinator: Assoc. Prof. Dr. Alaa Gabr **Head of Department:** Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

<u>Legal, Professional, and Social Aspects of Engineering</u> (CIE503)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Legal, Professional, and Social Aspects of Engineering
Course Code	CIE503
Year/Level	Level 5
Specialization	Major
Authorization Date of Course	-
Specification	
Pre- request	-

Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	2	2	1

2. Course Aims

No.	Aims						
2	Work in and manage a diverse team of professionals from various engineering disciplines, taking responsibility for own and team performance; and behave professionally and adhere						
_	to engineering ethics and standards.						
a	Deal with biddings, contracts and financial issues including project insurance and						
9	guarantees.						

3. Competencies:

Competencies	Learning Outcomes (LO'S)			
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	 a2 List the engineering-related business and management principles address construction defects, instability, and quality issues. b1 Address construction defects, instability, and quality issues. 			
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, environmental issues, and risk management principles	b1 Create methodical approaches when dealing with new and advancing technology.			

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C14 Deal with biddings, contracts and	
financial issues including project insurance	a1 define biddings, contracts, and financial issue
and guarantees.	

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Building and construction contracts procedure	4	2	-
2	Types of construction contracts	4	4	-
3	General conditions of contracts and contract documents	6	4	-
4	Legal obligations and governing international and Egyptian legislation	4	6	-
5	The role of the architect/ engineer in the construction process	2	4	-
6	The developments of the concepts of professionalism and ethics	4	2	-
7	Case historical will be discussed	4	2	-
	total	28	28	-

5. Teaching and learning methods:

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Building and construction contracts procedure	x				x	х								
Types of construction contracts	x				x	х								
General conditions of contracts and contract documents.	х				х	х								

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Legal obligations and governing international and Egyptian legislation			x	x				
The role of the architect/ engineer in the construction process.	IV		X	х				
The developments of the concepts of professionalism and ethics	x		x	x				
Case historical will be discussed	х		х	х				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason			
1	Presentation of the course in digital material	Better access any time			
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different level of students.			

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Mid-term examination	C2, C4	a2, b1, b1
2	Semester work	C2, C4, C14	a2, b1, b1, a1
3	Final term examination	C2, C4, C14	a2, b1, b1, a1

7.2 Evaluation Schedule:

No	Evaluation Method	Weeks
•		
1	Semester work	2nd,7th, 9th
2	Mid Term examination	8th
3	Practical Examination	14 th
4	Final term examination	15 <i>th</i>

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	20%

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Semester work	20%
3	Final-term examination	60%
	Total	100%

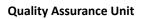
8. List of References:

No.	Reference List
1	Khurmi, R.S. (2014). " A textbook of hydraulics, fluid mechanics and hydraulic machines" S.
1	Chanel and company Ltd. P.990
2	Subramanya, K. (2008) "Flow in open channels" McGra- Hill Education (India). P.602
	Glenn E. Moglen. 2015. Fundamentals of Open Channel Flow. CRC Press. Available on Taylor
3	& Francis eBooks.

9. Facilities required for teaching and learning:

Facility								
1	Lecture classroom	3	White board					
2	Seminar	4	Data show system					

10. Matrix of knowledge and skills of the course:


No	Торіс	Aims	Competencies	LO's
1	Building and construction contracts procedure	2, 9	C2, C4, C14	a2, b1,
	Building and construction contracts procedure	2, 9	C2, C4, C14	b1, a1
2	Types of construction contracts	2, 9	C2, C4, C14	a2, b1,
	Types of construction contracts		C2, C4, C14	b1, a1
3	General conditions of contracts and contract documents.	2, 9	C2, C4, C14	a2, b1,
3	defieral conditions of contracts and contract documents.		C2, C4, C14	b1, a1
4	Legal obligations and governing international and		C2 C4 C14	a2, b1,
4	Egyptian legislation		C2, C4, C14	b1, a1
5	The role of the architect/ engineer in the construction	2, 9	C2 C4 C14	a2, b1,
	process.		C2, C4, C14	b1, a1
6	The developments of the	2, 9	C2, C4, C14	a2, b1,
В	concepts of professionalism and ethics		C2, C4, C14	b1, a1
7	Casa historical will be discussed	2, 9	C2 C4 C14	a2, b1,
	Case historical will be discussed		C2, C4, C14	b1, a1

Course Coordinator: Dr. Ayman Helal

Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

<u>Design of Irrigation Works</u> (CIE504)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Design of Irrigation Works
Course Code	CIE504
Year/Level	Level 5
Specialization	Major
Authorization Date of Course Specification	-
Pre-request	CIE401

Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims:

No.	Aims
4	Use the techniques, skills, and current engineering tools required for the design of
	irrigation works (bridges, culverts, syphons, locks, dams and heading up works).
_	Achieve the optimum design for the irrigation works (bridges, culverts, syphons, dams, and
_ /	heading up works).
40	Select appropriate and sustainable technologies for the irrigation works (retaining walls,
10	bridges, culverts, syphons, locks and heading up works).

3. Competencies:

Competencies	Learning outcomes (LO'S)
C1 Identify, formulate, and solve complex design of irrigation works problems by applying engineering fundamentals, basic science and mathematics.	 a1 Describe the relevant mathematical principles and theories in the discipline concepts regarding retaining walls, Bligh's and Lane's weighted creep theories, and the water losses through irrigation works. a3 Explain the principles types of retaining walls, and classification of irrigation woks structures.
C11 Select appropriate and sustainable technologies for irrigation works (bridges, culverts, syphons, weirs, and dams)	a2 Summarize, appropriate and sustainable technologies for the construction of bridges, culverts, syphons, weirs, locks and dams.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C12 Achieve an optimum design of irrigation works bridges, culverts, syphons, weirs, locks and dams.

- **b1** Achieve an optimum design of retaining walls, culverts, and bridges.
- **b2** Achieve an optimum design of irrigation works syphons, weirs, locks and dams.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Introduction: design of irrigation works	2	2	-
2	Classification of retaining walls (R.W)	4	4	-
3	Design of gravity retaining walls	2	2	-
4	Design of reinforced concrete R.W.	2	2	-
5	Design of reinforced concrete bridges	2	-	
6	Design of rolled steel joist bridge	2	2	-
7	Design of culverts	2	2	-
8	Design of syphons	4	4	-
9	Design of Heading up works (weirs)	4	4	-
10	Design of dams	2	2	_
11	Types and design of locks	2	2	
	Total	28	28	-

5. Teaching and Learning Methods:

Topics	Fa ce -t o- fa ce le ct ur e	On line lect ure	Fli pp ed Cl as sr oo m	Pr es en ta ti on an d m ov ie s	Di sc us si on	Pr ob le m so lvi ng	Br ai n st or mi ng	Pr oj ec ts	Sit e Vi sit s	Se If Ie ar ni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
Introduction: design of irrigation works	x	x		x	x	x								

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Classification of retaining walls (R.W)	х	x	х	х	х				
Design of gravity retaining walls	х	x		х	х				
Design of reinforced concrete R.W.	x	×		х	x				
Design of reinforced concrete bridges	x	×		х	x	x			
Design of rolled steel joist bridge	х	x		х	х				
Design of culvert	х	х		х	х	х			
Design of syphons	х	х		х	х	Х			
Design of heading up works (weirs)	х	х		х	х				
Design of dams	х	х		х	х				
Types and design of locks	х	x	х						

6. Teaching and Learning Methods of Disable Students:

No	Teaching Method
1	Additional Tutorials
2	Online lectures and assignments

7. Student assessment:

7.1 Student Evaluation Method:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No	Evaluation Method	Competencies	LOs
		C1	a1, a3
1	Mid Term Examination (written/ online)	C11	a2
		C12	b1
		C1	a1, a3
2	Formative (quizzes- online quizzes- presentation)	C11	a2
		C12	b1
		C1	a1, a3
3	Final Term Examination (written)	C11	a2
		C12	b1, b2

7.2 Evaluation Schedule:

No	Evaluation Method	Weeks			
1	Mid Term Examination (written/ online)	8th			
2	Practical/ Oral Examination	Examination 15th			
3	Formative (quizzes- online quizzes presentation-Tutorial and report assessment)	Every week			
4	Final Term Examination (written)	Decided by Faculty Council			

7.3 Weighting of Evaluation:

No	Evaluation Method	Weights
1	Mid Term Examination (written/ online)	20%
2	Formative (quizzes- online quizzes presentation-Tutorial and report assessment)	20%
3	Final Term Examination (written)	60%
	Total	100%

8. List of References:

No.	Reference List
1	Santosh Kumar Garg, "Irrigation Engineering and Hydraulic Structures: Water Resources
	Engineering", Vol. II, Khanna Publishers Pvt. Ltd, 2016.
_	Novak P., Moffat A.I.B., Nalluri C., Narayanan R., "Hydraulic Strucures", 4th Ed., Taylor &
2	Francis, 2007.
3	Liu Zhi Ming, "Handbook of Hydraulic Structure: Design", 2nd Ed., China Water Press, 2000.
4	الكود المصري للموارد المائية وأعمال الري المجلد السابع الطبعة الأولى 2003

9. Facilities Required for Teaching and Learning:

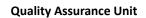
Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No	Facility
•	
1	Lecture Classroom
2	Lab Facilities
3	White Board
4	Data Show System
5	Presenter

10. Matrix of Knowledge and Skills of the Course

No.	Topic	Aims	Competencies	LO's
1	Introduction: design of irrigation works		C1 C11	a3 a2
2	Classification of retaining walls (R.W)		C1 C11	a3 a2
3	Design of gravity retaining walls	4, 10	C12	b1
4	Design of reinforced concrete R.W.	4, 10	C12	b1
5	Design of reinforced concrete bridges	4, 7, 10	C1 C11 C12	a1 a2 b1
6	Design of rolled steel joist bridge		C1 C11 C12	a1 a2 b1
7	Design of culverts		C1 C11 C12	a1 a2 b1
8	Design of syphons	4, 7, 10	C1 C11 C12	a1 a2 b1
9	Design of Heading up works (weirs)	4, 7, 10	C1 C11 C12	a1 a2 b1
10	Design of Dams	4, 7	C1 C11 C12	a1 a2 b1
11	Types and design of locks	4, 10	C11 C12	a2 b2

Course Coordinator: Prof. Dr. Mohamed Elkiki



Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Foundation Engineering (1) (CIE505)

1. Basic Information:

Program Title	Civil Engineering Program				
Department Offering the Program	Civil Engineering Department				
Department Responsible for the Course	Civil Engineering Department				
Course Title	Foundation (1)				
Course Code	CIE505				
Year/Level	Level 5				
Specialization	Major				
Authorization Date of Course Specification	-				
Pre- request	CIE501				

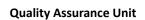
Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims

No.	Aims					
6	Analyze data from the intended tests to manage resources creatively.					
7	Achieve an optimum design of Foundations and Earth Retaining Structures					
10	10- Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.					

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	i n a lugino main ineag ano ineoneg mai are annicanie i


Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	c1 Identify, formulate, and solve complex engineering problems by -applying the concepts and the theories of mathematics. c2 Identify, formulate, and solve complex engineering problems by applying the concepts and the theories of sciences, appropriate to the discipline. c3 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals. a1 Define, basic characteristics, properties, concepts, and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology, and fluid mechanics. a2 Define the principles, basic properties, and features of construction material, as well as their use in sustainable technologies for construction of buildings, infrastructures, and water structures.
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	a1 Describe quality assurance systems, codes of practice, and standards.
C9 Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	
C12 Achieve an optimum design of Foundations.	b1 Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical	
1	Design of strip footing	2	2	-	
2	Design Isolated and combined footing	8	8	-	
3	3 Design of strap beam		2	-	
4	4 Design of raft foundations		8	-	
5	5 Pile cap - pile Foundation		8	-	
	Total	28	28	-	

5. Teaching and learning methods:

5. reaching and rearning method	٠.													
Topics	Fa ce to fa ce lec tu re	O nli ne lec tu re	Fli pp ed cla ssr oo m	Pr es en tat io n an d m ov ies	Di sc us sio n	Pr ob le m sol vi ng	Br ai n st or mi ng	Pr oj ec ts	Sit e vis its	Se If-I ea rni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
Design of strip footing	х	х		х	Х	х								
Design Isolated and combined footing	x	х		х	Х	х								
Design of strap beam	х	х		х	х	х				Х				
Design of raft foundations	х	х		х	х	х				х				
Pile cap - pile Foundation	х	х		х	х	х				х				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium and high-performance students	
4	Electronic model system for the Institution.	E. learning

7. Student Evaluation:

7.1 Student Evaluation method:

NI-	Frankratian Nastaad	C	10/-
No.	Evaluation Method	Competencies	105
		COLLIDCTCLICICS	

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Midterm examination	C1 C4	a1 b1 c1 a2 b2 c2 a3 b3 c3
2	Semester work (quizzes, sheets, report)	C1 C4	a1 a1 b1 c1 a2 b2 c2 a3 b3 c3 a1
3	Final term examination	C1 C4 C9 C12	a1 b1 c1 a2 b2 c2 a3 b3 c3 a1 d3 b1

7.2 Evaluation Schedule:

	12 Evaluation benediate:		
N		Evaluation Method	Weeks
1		Midterm examination	8th
2		Semester work	continuous evaluation
3	8	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights	
1	Midterm examination	20%	
2	Semester work	20%	
3	Final term examination	60%	
	Total 100%		

8. List of References:

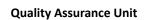
No.	Reference List
1	Course notes:
	Lecture notes prepared by the course coordinator +Solved examples.
2	Das, B., M. (2017), "Principles of Foundation Engineering", CENGAGE Learning,
3	Gulhati, S.K. and Datta, M. (2015), "Geotechnical Engineering", Tata McGraw-Hill, New Delhi.
4	Essential books (textbooks):
	Egyptian Code of Practice for Soil Mechanics and Foundations (2002)

9. Facilities required for teaching and learning:

Facility				
1	Lecture classroom	3	White board	
2	Seminar	4	Data show system	

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

10. Matrix of knowledge and skills of the course:


No	Торіс	Aims	Competencies	LO's
1	Design of strip footing	6, 7, 10	C1 C4	a1 b1 c1 a2 b2 c2 a3 b3 c3 a1
2	Design Isolated and combined footing	6, 7, 10	C1 C4	a1 b1 c1 a2 b2 c2 a3 b3 c3 a1
3	Design of strap beam	6, 7, 10	C1 C4	a1 b1 c1 a2 b2 c2 a3 b3 c3 a1
4	Design of raft foundations	6, 7, 10	C1 C4 C9 C12	a1 b1 c1 a2 b2 c2 a3 b3 c3 a1 d3 b1
5	Pile cap - pile Foundation	6, 7, 10	C1 C4 C9 C12	a1 b1 c1 a2 b2 c2 a3 b3 c3 a1 d3 b1

Course Coordinator: Dr. Hany Hashish

Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Inland Navigation and Harbor Engineering (CIE506)

1. Basic Information:

Program Title	Civil Engineering Program	
Department Offering the Program	Civil Engineering Department	
Department Responsible for the Course	Civil Engineering Department	
Course Title	Inland Navigation and Harbor Engineering	
Course Code	CIE506	
Year/Level	Level 5	
Specialization	Major	
Authorization Date of Course Specification	-	
Pre-request	ENG301	

Tooching hours	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims:

	ii Course Anns.		
No.	Aims		
6	Analyze data from the intended tests to manage resources creatively.		
7	Achieve an optimum design of earth Retaining Structures		
10	Select appropriate and sustainable technologies for construction of marine structures		

3. Competencies:

Competencies	Learning outcomes (LO'S)
C1 Identify, formulate, and solve complex problems by applying engineering fundamentals, basic science, and mathematics.	c1 Identify, formulate, and solve complex problems by applying the concepts and the theories of mathematics.
C2 Analyze data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to study coastal hydrodynamics.	b3 Analyze and interpret data
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, economic, environmental, ethical, and other aspects as appropriate the principles and	techniques specific to harbors and marine structures.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

contexts of sustainable design and development.	
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	a1 Describe quality assurance systems, codes of practice, and standards, as well as health and safety regulations and environmental concerns.
C5 Practice research techniques and methods of investigation as an inherent part of learning.	d1 Search for information to engage in lifelong self-learning discipline.
C6 Plan, supervise and monitor implementation of marine projects	a1 Show the appropriate and sustainable technologies for construction of marine structures.
C11 Select appropriate and sustainable technologies for construction of marine structures	 a1 Recognize the fundamentals of structural analysis. a2 Summarize, appropriate and sustainable technologies for construction of marine structures. c1 Using either numerical techniques or physical measurements and/or testing for coastal hydrodynamics
C12 Achieve an optimum design of marine structures and Harbors.	b1 Achieve an optimum design of marine
C13 Plan and manage construction processes and environmental impacts of projects.	c1 Assess environmental impacts of projects.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Wind and current – tide Wave theories	8	8	-
2	Surf zone hydrodynamics	2	2	-
3	Wave forces	4	4	-
5	Harbor planning	2	2	-
6	6 Design of breakwater		4	-
7 Design of quay walls		4	4	-
8			2	-
9 Inland navigation		2	2	-
	Total	28	28	-

5. Teaching and Learning Methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	Fa ce -t o- fa ce le ct ur e	On line lect ure	Fli p pe d Cl as sr o m	Pr es en ta ti o n an d m ov ie	Di sc us si o n	Pr o bl e m so lvi ng	Br ai n st or mi ng	Pr oj ec ts	Si te Vi sit s	Se If le ar ni ng an d Re se ar ch	C o pe ra ti ve	Di sc ov er in g	M o de lin g	L a b
Wind and current – Tide -Wave theories	x	x			x	x								
Surf zone hydrodynamic s	x	x		x	x	x	x							
Wave forces	х	х			х	х								
Harbor planning	х	х			х	х			х					
Design of breakwater	х	х		х	х	х								
Design of quay walls	х	х		х	х	х							х	
Ship repair structures	х	х			х	х				х	х			
Inland navigation	х	х			х	х	х							х

6. Teaching and Learning Methods of disabled Students:

0. 100	tacining and Learning Methods of disabled Students.					
No	Teaching Method					
1	Additional Tutorials					
2	Online lectures and assignments					

7. Student assessment:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.1 Student Assessment Methods:

No.	Assessment Method	Competencies	LOs
		C1	c1
		C2	b3
1	Mid Term Examination (written/ online)	C3	a1
		C11	a2, c1
		C13	c1
2	Formative (quizzes, enline quizzes, presentation)	C3	a1
	Formative (quizzes- online quizzes- presentation)	C4	a1
		C3	a1
		C4	a1
3	Final Torm Evamination (written)	C 5	d1
3	Final Term Examination (written)	C6	a1
		C11	a2
		C12	b1, b2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks	
1	1 Mid Term Examination (written/ online) 8th		
2	Practical/ Oral Examination 15th		
3	Formative (quizzes- online quizzes presentation-Tutorial and report assessment)	Every week	
4	Final Term Examination (written)		

7.3 Weighting of Assessments:

No	Assessment Method				
1	Mid Term Examination (written/ online)	20%			
2	Formative (quizzes- online quizzes presentation Tutorial and report assessment)	20%			
3	Final Term Examination (written)	60%			
Total					

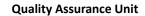
8. List of References:

Essential Books (Textbooks)	Carl A. Thoresen, port Designers Handbook Third edition, 2014.		
Recommended books	Gregory Tsinker, Handbook of port and Harbor Engineering:		
Recommended books	Geotechnical and structural and structural Aspects, 2014.		
Daviddicale Mahaitas ata	Journal of Geotechnical Engineering (ASCE).		
Periodicals, Web sites, etc	Journal of Hydraulic Division (ASCE).		

9. Facilities Required for Teaching and Learning:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Facility
1	Lecture Classroom
2	Lab Facilities
3	White Board
4	Data Show System
5	Presenter


10. Matrix of Knowledge and Skills of the Course

10.	Matrix of Kilowieuge and Skills of the Course					
No.	Торіс	Aims	Competencies	LO's		
1	Wind and current – Tide -Wave theories	1	C1 C2 C11 C13	c1 b3 a2 c1		
2	Surf zone hydrodynamics	1	C11 C13	c1 c1		
3	Wave forces	1	C3	a1		
4	Harbor planning		C5 C6 C11 C12	d1 a1 a2 b2		
5	Design of breakwater	1	C12	b1		
6	Design of quay walls	1	C4	a1		
7	Ship repair structures	1	C3	a1		
8	Inland navigation	1	C3	a1		

Course Coordinator: Prof. Dr. Osami Rageh **Head of Department:** Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

<u>Project (1)</u> (CIE509)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Project (1)
Course Code	CIE509
Year/Level	Level 5
Specialization	Major
Authorization Date of Course Specification	-
Pre- request	Complete 140 hr.

Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	2	-	2

2. Course Aims

No	Aims
•	
2	Work in and manage a diverse team of professionals from various engineering disciplines, taking responsibility for own and team performance; and behave professionally and adhere to engineering ethics and standards.
5	Communicate effectively with a variety of audiences using a variety of forms, methods, and languages; cope with academic and professional issues in a critical and creative manner; and display leadership, business administration, and entrepreneurial abilities.
7	Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.

3. Competencies:

Competencies	Learning Outcomes (LO'S)			
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	 a1 Define, basic characteristics, properties, concepts, and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics. a2 Define the principles, basic properties, and features of construction material, as well as their use in sustainable 			

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	technologies for construction of buildings, infrastructures, and water structures. b1 Conduct basic experiments to learn about the basic characteristics and features of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics. b2 Conduct basic experiments to learn about the applications of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology, and fluid mechanics in the fields of transportation and traffic, roadways and airports, railways, sanitary works, irrigation, water resources and harbors, or any other emerging field relevant to the discipline. b3 Analyze and interpret data. b4 Evaluate components, systems, and processes are
	evaluated for their characteristics and performance. c1 Choose relevant mathematical and computer- based methodologies for problem modelling and analysis. c2 Develop suitable experimentation and/or simulation. c3 Applying statistical analyses and objective engineering judgment to draw conclusions.
c3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	 a1 Learn the general principles of design techniques specific to reinforced concrete and steel structures, foundations and earth retaining structures. a2 Understand the professional ethics and impacts of engineering solutions on society and environment. a3 Recognizes the various construction defects, instability and quality issues and assess environmental impacts of projects. b1 Judge engineering decisions considering. balanced costs, benefits, safety, quality,
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	 a1 Describe quality assurance systems, codes of practice, and standards, as well as health and safety regulations and environmental concerns. a3 Define contemporary engineering technologies and their applications in relation to disciplines. c2 Use fundamental organizational and project management abilities. c3 Utilize modern technologies.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C5 Practice research techniques and methods of investigation as an inherent part of learning.	 b1 Assess different ideas, views, and knowledge from a range of sources. c1 Prepare technical reports. d1 Search for information to engage in lifelong self-learning discipline.
C7 Function efficiently as an individual and as a member of multi-disciplinary and multicultural teams.	d1 Collaborate effectively within multidisciplinary team.d2 Work in stressful environment and within constraints.d3 Motivate individuals.
C8 Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	d1 Communicate effectively. d2 Demonstrate efficient IT capabilities.
c11 Select appropriate and sustainable technologies for construction of buildings, infrastructures and water structures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.	 a1 Recognize the fundamentals of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology, and fluid mechanics. a2. Summarize, appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures. c1 Using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.
C12 Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth	 b1 Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures. b2 Achieve an optimum design of works for transportation and traffic, roadways and airports, railways, sanitary works, irrigation, water resources and harbors, or any other emerging field relevant to the discipline.
C13 Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and	 a1 define plain and mange construction process. b1 Address construction defects, instability, and quality issues c1 Assess environmental impacts of projects.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

assess environmental impacts of projects.	
C14 Deal with biddings, contracts	 a1 define biddings, contracts, and financial issues. b1 Address biddings, contracts and financial issues including project insurance and guarantees. c1 Apply biddings, contracts, and financial issues on civil
	engineering projects

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	The graduation project aims to explore students' ability and skills to comprehensively address and manage architectural and technical issues associate with a large-scale design project	8	-	8
2	The project examines and measures students' knowledge, skills, and collective outputs gained throughout their study in the faculty and department in a combined manner, that reflects identity and creativity in all its preliminary and analytical phases.	10	-	10
3	A complete set of appropriately presented drawings, accompanied by a detailed report of the project's attributable studies and potential considerations should be implemented by each student	10	-	10
	Total	28	-	28

5. Teaching and learning methods:

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self - learning and Research	Cooperative	Discovering	Modeling	lab
The graduation project aims to explore students' ability and skills to comprehensively	х			х	х	х			х		х			х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

address and manage architectural and technical issues associated with a large-scale design pro										
The project examines and measures students' knowledge, skills, and collective outputs gained throughout their study in the faculty and department in a combined manner, that reflects identity and creativity in all its preliminary and analytical phases.	x		x	x	x			x		x
A complete set of appropriately presented drawings, accompanied by a detailed report of the project's attributable studies and potential considerations should be implemented by each student	x		x	x	x			х		х

6. Teaching and learning methods for disabled students:

<u> </u>	readining and rearrining methods for disabled stadents.										
No.	Teaching Methods	Reason									
1	Presentation of the course in digital material	Better access any time									
2	Wed communication with students	Better communication with certain cases									
3	Asking small groups to do assignments; each composed of low, medium, and high-performance	Knowledge and skills transfer among different levels of students									
	students	3									

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Oral Examination	C2	a1, a2, b1, b2, b3, b4, c1, c2, c3

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

		C3	a1, a2, a3, b1
		C4	a1, a3, c2, c3
		C5	b1, c1
		C11	a1, a2, c1 b1, b2, a1, b1, c1
		C12	a1, b1, c1
		C13	
		C14	
		C2	
		C3	
		C4	a1, a2, b1, b2, b3, b4, c1, c2, c3
		C5	a1, a2, a3, b1
2	Semester work	C8	a1, a3, c2, c3 b1, c1, d1
		C11	d1, d2
		C12	a1, a2, c1 b1, b2, a1, b1, c1 a1, b1, c1
		C13	
		C14	

7.2 Evaluation Schedule:

No	Evaluation Method	Weeks
1	Oral Examination	at the end of CIE510
2	Semester work	2 nd -7 th - 9 th -14 th

7.3 Weighting of Evaluation:

N	Evaluation Method	Weights	
0.			
1	Oral Examination	50%	
2	Semester work (Presentation, Report)	50%	
	Total	100%	

8. List of References:

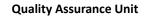
No.	Reference List
1	Subject studies

9. Facilities required for teaching and learning:

	Facility				
1	Lecture classroom	3	White board		
2	Seminar	4	Data show system		
5	Lab.				

10. Matrix of knowledge and skills of the course:

	No	Topic	Aims	Competencies	LO's
--	----	-------	------	--------------	------


Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	The graduation project aims to explore students' ability and skills to comprehensively address and manage architectural and technical issues associated with a large-scale design pro	2, 3, 5, 7, 8, 10	C2 C3 C4 C5 C11 C12	a1, a2, b1, b3, b4, c1, c2 a1, a2, a3, b1 a1, a3, c2, c3 b1, c1 a1, a2, c1 b1, b2
2	The project examines and measures students' knowledge, skills, and collective outputs gained throughout their study in the faculty and department in a combined manner, that reflects identity and creativity in all its preliminary and analytical phases.	2, 3, 5, 7, 8, 10	C4 C5 C8 C11 C12 C13 C14	a1, a3, c2, c3 b1, c1, d1 d1, d2 a1, a2, c1 b1, b2 a1, b1, c1 a1, b1, c1
3	A complete set of appropriately presented drawings, accompanied by a detailed report of the project's attributable studies and potential considerations should be implemented by each student	2, 3, 5, 7, 8, 10	C3 C4 C5 C8 C11 C12 C13 C14	a1, a2, a3, b1 a1, a3, c2, c3 b1, c1, d1 d1, d2 a1, a2, c1 b1, b2 a1, b1, c1 a1, b1, c1

Course Coordinator: Prof. Dr. Mohamed Elkiki Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

<u>Project (2)</u> (CIE510)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Project (2)
Course Code	CIE510
Year/Level	Level 5
Specialization	Major
Authorization Date of Course Specification	-
Pre- request	CIE509

Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	1	4	-

2. Course Aims

No.	Aims
_	Work in and manage a diverse team of professionals from various engineering disciplines,
2	taking responsibility for own and team performance; and behave professionally and adhere to engineering ethics and standards.
3	Recognize his or her role in promoting engineering and contributing to the profession's and
3	community's development; by appreciating the importance of the environment, both physical and natural, and working to promote sustainability concepts;
5	Communicate effectively with a variety of audiences using a variety of forms, methods, and languages; cope with academic and professional issues in a critical and creative manner; and display leadership, business administration, and entrepreneurial abilities.
7	Achieve an optimum design of reinforced concrete and steel structures, foundations and earth retaining structures; and at least three of the following civil engineering topics: Transportation and traffic, roadways and airports, railways, sanitary works, irrigation, water resources and harbors; or any other emerging field relevant to the discipline.
10	Select appropriate and sustainable technologies for construction of buildings, infrastructures and water structures, using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.

3. Competencies:

Competencies	Learning Outcomes (LO'S)

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions

C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.

- **a1** Define, basic characteristics, properties, concepts, and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.
- **a2** Define the principles, basic properties, and features of construction material, as well as their use in sustainable technologies for construction of buildings, infrastructures, and water structures.
- **b1** Conduct basic experiments to learn about the basic characteristics and features of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology, and fluid mechanics.
- **b2** Conduct basic experiments to learn about the applications of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics in the fields of transportation and traffic, roadways and airports, railways, sanitary works, irrigation, water resources and harbors, or any other emerging field relevant to the discipline.
- **b3** Analyze and interpret data.
- **b4** Evaluate components, systems, and processes are evaluated for their characteristics and performance.
- **c1** Choose relevant mathematical and computer-based methodologies for problem modelling and analysis.
- **c2** Develop suitable experimentation and/or simulation.
- **c3** Applying statistical analyses and objective engineering judgment to draw conclusions.
- **a1** Learn the general principles of design techniques specific to reinforced concrete and steel structures, foundations and earth retaining structures.
- **a2** Understand the professional ethics and impacts of engineering solutions on society and environment.
- **a3** Recognizes the various construction defects, instability and quality issues and assess environmental impacts of projects.

الرحية

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	 		
	b1 Judge engineering decisions considering.		
	balanced costs, benefits, safety, quality		
	a1 Describe quality assurance systems, codes of		
C4 Utilize contemporary technologies,	practice, and standards, as well as health and safety		
codes of practice and standards, quality	regulations and environmental concerns.		
guidelines, health and safety requirements,	a3 Define contemporary engineering technologies		
environmental issues, and risk management	and their applications in relation to disciplines.c2 Use fundamental organizational and project		
principles.	management abilities.		
	c3 Utilize modern technologies.		
	b1 Assess different ideas, views, and knowledge		
C5 Practice research techniques and	from a range of sources.		
methods of investigation as an inherent	c1 Prepare technical reports.		
part of learning.	d1 Search for information to engage in lifelong		
	self-learning discipline.		
	d1 Collaborate effectively within multidisciplinary		
C7 Function efficiently as an individual and	team.		
as a member of multi-disciplinary and	d2 Work in stressful environment and within		
multicultural teams.	constraints.		
	d3 Motivate individuals.		
C8 Communicate effectively – graphically,	d1 Communicate effectively.		
verbally and in writing – with a range of	d2 Demonstrate efficient IT capabilities		
audiences using contemporary tools.	at December the foodeness that of the store is		
	a1 Recognize the fundamentals of structural analysis and mechanics, properties and strength of		
C11 Select appropriate and sustainable	and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology, and		
technologies for construction of buildings,	fluid mechanics.		
infrastructures and water structures; using	a2 Summarize, appropriate and sustainable		
either numerical techniques or physical	technologies for construction of buildings,		
measurements and/or testing by applying a	infrastructures, and water structures.		
full range of civil engineering concepts and	c1 Using either numerical techniques or physical		
techniques of structural analysis and	measurements and/or testing by applying a full		
mechanics, properties and strength of	range of civil engineering concepts and techniques		
materials, surveying, soil mechanics, hydrology and fluid mechanics.	of structural analysis and mechanics, properties and		
Thydrology and fidid mechanics.	strength of materials, surveying, soil mechanics,		
	hydrology and fluid mechanics.		
C12 Achieve an optimum design of	b1 Achieve an optimum design of Reinforced		
Reinforced Concrete and Steel Structures,	Concrete and Steel Structures, Foundations and		
Foundations and Earth Retaining Structures;	Earth Retaining Structures.		
and at least three of the following civil	b2 Achieve an optimum design of works for		
engineering topics: Transportation and	transportation and traffic, roadways and airports,		
Traffic, Roadways and Airports, Railways,	railways, sanitary works, irrigation, water resources		

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.	and harbors, or any other emerging field relevant to the discipline.
C13 Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess environmental impacts of projects.	 a1 define plain and mange construction process. b1 Address construction defects, instability, and quality issues c1 Assess environmental impacts of projects.
C14 Deal with biddings, contracts and financial issues including project insurance and guarantees.	 a1 define biddings, contracts, and financial issues. b1 Address biddings, contracts and financial issues including project insurance and guarantees. c1 Apply biddings, contracts, and financial issues on civil engineering projects

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Continuation and conclusion of the investigations on the			
	civil engineering problems of Project I; written reports and	14	56	-
	team presentations are required.			
	Total	14	56	-

5. Teaching and learning methods:

5. Teaching and Tearning Methods.														
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Continuation and conclusion of the investigations on the civil industrial problems		х		х	х	х					х			х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

of Project I; written							
reports and team							
presentation are							
required.							

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason	
1	Presentation of the course in digital material	Better access any time	
2	Wed communication with students	Better communication with certain cases	
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	i knowledge and skills fransfer among i	

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
	0.15	C3	a1, a2, a3, b1
		C4	a1, a3, c2, c3
1		C11	a1, a2, c1
1	Oral Examination	C12	b1, b2
		C13	a1, b1, c1
		C14	a1, b1, c1
	Semester work	C3	a1, a2, a3, b1
		C4	a1, a3, c2, c3
2		C11	a1, a2, c1
2		C12	b1, b2
		C13	a1, b1, c1
		C14	a1, b1, c1
3	Report evaluation	C5	b1, c1, d1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Oral Examination	at the end of IE 510
2	Semester work	2nd -7th - 9th -14th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Oral Examination	50%
2	Semester work (Presentation, Report)	50%
	Total	100%

8. List of References:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Reference List
1	Subject studies

9. Facilities required for teaching and learning:

facility				
1	Lecture classroom	3	White board	
2	Seminar	4	Data show system	
5	Lab.			

10. Matrix of knowledge and skills of the course:

	or mount of knowledge and skins of the coarse.						
No	Topic	Aims	Competencies	LO's			
			C3	a1, a2, a3, b1			
	Continuation and conclusion of the	2, 3, 5, 7, 8, 10	C4	a1, a3, c2, c3			
	investigations on the chemical industrial problems of Project I; written reports and team presentation are required.		C5	b1, c1, d1			
1			C11	a1, a2, c1			
			C12	b1, b2			
			C13	a1, b1, c1			
			C14	a1, b1, c1			

Course Coordinator: Prof. Dr. Mohamed Elkiki **Head of Department:** Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Quality Assurance Unit

Bridge Engineering (CIE511)

1. **Basic Information:**

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Bridge Engineering
Course Code	CIE511
Year/Level	Level 5
Specialization	Major
Authorization Date of Course Specification	-
Pre-request	Complete 100 h

Tanahina hawa	Lectures	Tutorial	Practical	
Teaching hours	2	2	-	

2. **Course Aims:**

No.	Aims
4	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.
7	Achieve an optimum design for bridges, by using elastic theory and practical methods for analysis and design bridges.
10	Use the techniques, skills, and codes of practice effectively and professionally in designing bridges.

Intended Learning Outcomes (LO'S):

5. Intended Learning Outcomes (LO 3).			
Competencies	Learning Outcomes (LO'S)		
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	concepts, and techniques of: structural analysis and mechanics, properties and		
C9 Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	I d1 Think creatively in solving problems of		
C12 Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of	b1 Achieve an optimum design of bridges.		

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

the following civil engineering topics:
Transportation and Traffic, Roadways and
Airports, Railways, Sanitary Works, Irrigation,
Water Resources and Harbors; or any other
emerging field relevant to the discipline.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Different types of bridges.	4	4	-
2	Planning of bridges: - Parts of bridges Layout of bridges.	4	4	-
3	Load calculations and its different effects.	4	4	-
4	Methods of bridge design using the standard specifications codes.	10	10	-
5	Using commercial computer packages for bridge design.	2	2	-
6	Different construction methods in bridges.	4	4	_
	Total	28	28	_

5. Teaching and learning methods:

Topics		On lin e lec tur	Fli pp ed cla ssr	n	Dis cus sio n	Pr obl em sol vin g	sto	Pr oje	Sit e visi ts	ling lan	Co op era tiv e	DIS	od eli	
Different types of bridges.	х			х	х									х
Planning of bridges: Parts of bridges - Layout of bridges.	х			х	х									х
Load calculations and its different effects.	х			х	х									х
Methods of bridge design using the standard specifications codes.	х			х	х									х
Using commercial computer packages for bridge design.	х			x	х					х				х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	_								
Different construction methods in bridges.	х		х	х			Х		х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different level of students.

7. Student evaluation:

7.1 Student evaluation method:

No.	Evaluation Method	Competencies	LO's
		C2	a1, b3
1	Midterm examination	C9	d1
		C12	b1
		C2	a1, b3, c1
2	Semester work (quizzes, sheets, report)	C 9	d1
		C12	b1
		C2	a1, b3
3	Final term examination	C 9	d1
		C12	b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8^{th}
2	Semester work	continuous evaluation
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	Course notes:
	Lecture notes prepared by the course coordinator.
	Solved examples.
2	Essential books (textbooks):

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

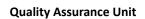
	 Egyptian Code of Practice for Steel Construction and Bridges (ASD), Code No. 205, HBRC, 2003. Egyptian Code for Planning, Design & Construction of Bridges and Elevated Intersections, Code No. 207-2001, HBRC, 2015.
3	Recommended books: •John F. Unsworth, "Design and Construction of Modern Steel Railway Bridges", 2nd Ed., CRC Press, 2018. •Metwally Abu-Hamd "Steel Bridges", Cairo University, 2010.
4	Periodicals, Web sites, etc. o www.bridgeweb.com o www.bridgeengineer.org

9. Facilities required for teaching and learning:

No	Facility
•	·
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

10. Matrix of knowledge and skills of the course:

No	Topic	Aims	Competencies	LO's
1	Different types of bridges.	4	C2	a1, b3
2	Planning of bridges: - Parts of bridges Layout of bridges.	4,7	C2, C9	a1, b3 d1
3	Load calculations and its different effects.	7,10	C2, C9,	a1, b3 d1
4	Methods of bridge design using the standard specifications codes.	7,10	C2, C9, C12	a1, b3 d1 b1
5	Using commercial computer packages for bridge design.	7,10	C2, C9, C12	c1 d1 b1
6	Different construction methods in bridges.	4	C2, C9,	a1, b3 d1



Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Course Coordinator: Assoc. Prof. Dr. Ashraf Elsabagh **Head of Department:** Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Coastal Engineering Fundamentals (CIE512)

1. Basic Information

1. Dasic information	
Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Coastal Engineering Fundamentals
Course Code	CIE512
Year/Level	Level 5
Specialization	Major
Authorization Date of Course Specification	-
Pre-request	Complete 100 h

Teaching hours	Lectures	Tutorial	Practical
, and the second	2	2	-

2. Course Aims:

No.	Aims
4	Apply knowledge of mathematics, science, engineering concepts, and construct structures
4	to solve fundamental engineering problems for design harbors and marine structures.
7	Achieve an optimum design of coastal protection structures.
10	Select appropriate and sustainable technologies for construction of coastal protection
10	structures

3. Competencies:

Competencies	Learning outcomes (LO'S)
C2 Develop and conduct appropriate analyze and interpret data and use statistical analyses to draw conclusions.	b4 Evaluate components, systems, and processes are evaluated for their characteristics and performance.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C3 Apply engineering design processes to produce cost-effective solutions that meet **a1** Learn the general principles of design specified needs with consideration for global, techniques specific to harbors and marine economic, environmental, ethical, and other structures. aspects as appropriate the principles and contexts of sustainable design and development. C4 Utilize contemporary technologies, codes of **a1** Describe quality assurance systems, codes of practice and standards, quality guidelines, practice, and standards, as well as health and health and safety requirements, environmental safety regulations and environmental concerns. issues, and risk management principles. C11 Select appropriate and sustainable **a1** Recognize the fundamentals of structural technologies for construction of buildings, analysis and mechanics, properties and infrastructures, and water structures; using strength of materials, surveying, soil mechanics, either numerical techniques or physical hydrology, and fluid mechanics. measurements and/or testing by applying a full **a2** Summarize, appropriate and sustainable range of civil engineering concepts and technologies for construction of marine techniques of structural analysis and structures. mechanics, properties **c1** Using either numerical techniques or and strength of materials, surveying, soil mechanics, hydrology physical measurements and/or testing for and fluid mechanics. coastal hydrodynamics C12 Achieve an optimum design of marine **b1** Achieve an optimum design of marine structures and Harbors. structures. **C13** Plan and manage construction processes: address construction defects, instability, and **c1** Assess environmental impacts of projects. quality issues; maintain safety measures in

4. Course Contents:

and

environmental impacts of projects.

materials:

and

assess

construction

No.	Topics Lectures		Tutorial	Practical
1	Effect of waves on coastal structures	6	6	-

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	design of seawalls, jetties, harbors, ship channels and pipelines	6	6	-
3	diffusion and spreading	4	4	-
4	oil spill containment and collection	6	6	-
6	Analysis of wave data.	6	6	-
	Total	28	28	-

5. Teaching and learning methods:

Topics	Fa ce -to -fa ce lec tu re	Onl ine lect ure	Fli pp ed Cl as sr oo m	Pr es en tat io n an d m ov ies	Di sc us sio n	Pr ob le m sol vi ng	Br ai n st or mi ng	Pr oj ec ts	Sit e Vi sit s	Se If Ie ar ni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
Effect of waves on coastal structures	x	x			x	x								
design of seawalls, jetties, harbors, ship channels and pipelines	х	х		x	x	x	x						x	
diffusion and spreading	x	x			x	x			x					
oil spill containmen	х	х			х	х			х					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

t and collection									
Analysis of wave data.	х	Х	Х	Х	Х				

6. Teaching and learning methods for disabled students:

No.	Teaching Method
1	Additional Tutorials
2	Online lectures and assignments

7. Student assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	Competencies	LOs
1	Mid Term Examination (written/ online)	C11	a2, c1
	wild ferrif Examination (written) online)	C13	c1
2	Formative (quizzes- online quizzes- presentation)	C3	a1
	Formative (quizzes- omine quizzes- presentation)	C4	a1
		C3	a1
		C4	a1
3	Final Term Examination (written)	C11	a1, a2, c1
		C12	b1, b2
		C13	c1

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination (written/ online)	8th
2	Practical/ Oral Examination	15th
3	Formative (quizzes- online quizzes presentation-Tutorial and report assessment)	Every week
4	Final Term Examination (written)	Decided by Faculty Council

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination (written/ online)	20%
2	Formative (quizzes- online quizzes presentation-Tutorial and report assessment)	20%
3	Final Term Examination (written)	60%
	Total	100%

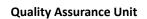
8. List of References:

No	Reference List
1	الكود المصري للموارد المائيه وأعمال الري المجلد السابع الطبعه الأولى 2003

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Carl A. Thoresen, port Designers Handbook Third edition, 2018.
3	Gregory Tsinker, Handbook of port and Harbor Engineering: Geotechnical and structural and structural Aspects, 2018.
4	Journal of Geotechnical Engineering (ASCE).
5	Journal of Hydraulic Division (ASCE).

9. Facilities Required for Teaching and Learning:


٥.	radinates redained for readining and realiting.
No	Facility
•	
1	Lecture Classroom
2	Lab Facilities
3	White Board
4	Data Show System
5	Presenter

10. Matrix of knowledge and skills of the course:

No.	Торіс	Aims	Competencies	LO's
1	Effect of waves on coastal structures	1	C11	a2
_		_	C13	c1
2	Design of seawalls, jetties, harbors, ship channels and pipelines	1	C4	a1
2	Diffusion and anneading		C11	c1
3	Diffusion and spreading	1	C13	c1
4	Oil spill containment and collection	1	C11	a1
4	Oil spill containment and collection	1	C12	b1
_	Analysis of ways data	1	C3	a1
5	Analysis of wave data.	1	C2	b4

Course Coordinator: Prof. Dr. Osami Rageh **Head of Department:** Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Concrete Structures Technology (CIE513)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Concrete Structure Technology
Course Code	CIE513
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre- request	Complete 100 h

Too shine he we	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims

No.	Aims
8	Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures, using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as properties and strength of materials
10	Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures, using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as properties and strength of materials

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective. engineering judgment to draw conclusions	a2 Define the principles, basic properties, and features of construction material, as well as their use in sustainable technologies for construction of buildings.
C4 Utilize contemporary technologies, codes of	
practice and standards, quality guidelines, health and safety requirements,	a1 Describe codes of practice, and standards, as well as health and safety regulations.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

environmental issues, and risk management principles	a3 Define contemporary engineering technologies and their applications in relation to disciplines.
C11 Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures, using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of properties and strength of materials	 a1 Recognize the fundamentals of properties and strength of materials. a2 Summarize, appropriate and sustainable technologies for construction of buildings,

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Advantages and limitations of concrete, types of cements admixtures, batching equipment, types of mixers, ready mixed concrete, pumping equipment, slip forming, concreting	8	8	-
2	Casting in lifts, finishing concrete, hot weather concreting, formwork design, methods of curing, strength of concrete, destructive and nondestructive testing of concrete	12	12	-
3	Durability, repair, and maintenance of concrete.	8	8	-
	Total	28	28	-

5. Teaching and learning methods:

5. Teaching and lear														
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
Advantages and limitations of concrete, types of cements admixtures,	V			V	V	V	V						V	

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

batching equipment, types of mixers, ready mixed concrete, pumping equipment, slip forming, concreting										
Casting in lifts, finishing concrete, hot weather concreting, formwork design, methods of curing, strength of concrete, destructive and nondestructive testing of concrete	V		V	V	\		V		V	
Durability, repair, and maintenance of concrete.	√		√	√	√	√				V

6. Teaching and learning methods for disabled students:

	reacting and rearring methods for disabled stadeness				
No.	Teaching Methods	Reason			
1	Presentation of the course in digital material	Better access any time			
2	Wed communication with students	Better communication with certain cases			
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	i knawidaga ana skilis transtar amangi			
4	Electronic model system for the Institution.	E. learning			

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C2 C11	a2 a1, a2
2	Semester work (quizzes, sheets, report)	C4	a1 a3

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

		C11	a1 a2
		C2	a 2
3	Final term examination	C4	a1, a3
		C11	a1, a2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8th
2	Semester work	all
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

Reference List
Eric Fleming (2018), construction technology an illustrated introduction, black well publishing.
محمود امام ومحمد امين "خواص ومقاومة المواد" - الجزء الثاني ، كلية الهندسة جامعة المنصورة.
"الكود المصرى لتصميم وتنفيذ المنشآت الخرسانية المسلحة كود رقم203" التحديث الثاني(2018) وزارة الإسكان والمرافق
والمجتمعات العمر انية - مركز بحوث الإسكان والبناء والتخطيط العمر اني - جمهورية مصر العربية.

9. Facilities required for teaching and learning:

Facility			
1	Lecture classroom	3	White board
2	Seminar	4	Data show system

10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Advantages and limitations of concrete, types of cements and admixtures, batching equipment, types of mixers, ready-mixed concrete, pumping equipment, slip forming, concreting	8,10	C4 C11	a3, a1 a1, a2
2	Casting in lifts, finishing concrete, hot weather concreting, formwork design, methods of curing, strength of concrete, destructive and nondestructive testing of concrete	8,10	C4 C11 C2	a 3, a 1 a1 a2 a2
3	Durability, repair, and maintenance of concrete.	8,10	C11	a1, a2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	C2	a 2

Course Coordinator: Dr. Nesreen Elawadly **Head of Department:** Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Construction Contracting (CIE514)

1. Basic Information

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Construction Contracting
Course Code	CIE514
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Prerequisite	Complete 100 CH

Tanahina Haum	Lectures	Tutorial	Practical
Teaching Hours	2	2	-

2. Course Aims:

No.	Aims
6	Analyze data from the intended tests to manage resources creatively.
8	Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.
9	Deal with biddings, contracts, and financial issues including project insurance and guarantees.

3. Competencies:

Competencies	Learning Outcomes (LOs)
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline, and within the principles and contexts of sustainable design and development.	 b1 Judge engineering decisions considering balanced costs, benefits, safety, quality, reliability, and environmental impact. c2 Applying engineering design procedures to generate cost-effective solutions while adhering to sustainable design and development principles and contexts.
C9 Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	d2 Effectively manage tasks, time, and resources.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C13 Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.	a1 Define the plan and manage the construction process.
C14 Deal with biddings, contracts, and financial issues including project insurance and guarantees.	 a1 Define biddings, contracts, and financial issues. b1 Address biddings, contracts, and financial issues including project insurance and guarantees. c1 Apply biddings, contracts, and financial issues on civil engineering projects.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Construction Contracting for Contracts, Architects, and Owners	2	2	-
2	Organization and Administration Industry Structure	2	2	-
3	Construction Contracts, Bonds, and Insurance	2	2	-
4	Planning, Estimating, and Control	4	4	-
5	Quantity Takeoff and Pricing	4	4	-
6	Labor, Equipment, Excavation and Concrete Estimate	6	6	-
7	Proposal Preparation	2	2	-
8	Scheduling, Accounting, and Cost Control	4	4	-
9	Contract Documents to Prepare Detailed Estimate	2	2	-
	Total	28	28	-

5. Teaching and Learning Methods:

No.	Topics	Fa ce- To -Fa ce Le	On lin e Le ct	Fli pp ed Cl as sr	Pr es en tat io n	Di sc us sio	Pr ob le m- So	Br ai n St or	Pr oj ec ts	Sit e Vis its	Sel f-L ea rni ng an d	Co op er ati	Di sc ov eri	M od eli ng	La b
		ct ur e	ur e	00 m	d M ov ies	n	lvi ng	mi ng	3	163	Re se ar ch	ve	ng	116	
1	Construction Contracting for		√		163	√					CII				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Contracts, Architects, and Owners									
2	Organization and Administration Industry Structure	√		√						
3	Construction Contracts, Bonds, and Insurance		√		√					
4	Planning, Estimating, and Control	V		√						
5	Quantity Takeoff and Pricing		√			√				
6	Labor, Equipment, Excavation and Concrete Estimate						\checkmark			
7	Proposal Preparation	V					V			
8	Scheduling, Accounting, and Cost Control		V		√					
9	Contract Documents to Prepare Detailed Estimate	V		√						

6. Teaching and Learning Methods for Disabled Students:

<u> </u>	dening and Learning Methods for Disabled Stade			
No.	Teaching Method	Reason		
1	Presentation of The Course in Digital Material	Better Access at Any Time		
2	Wed Communication with Students	Better Communication with Certain Cases		
3	Asking Small Groups to Do Assignments; Each Composed of Low, Medium, and High-Performance Students	Knowledge and Skills Transfer Among Different Levels of Students		
4	An Electronic Model System for The Institution	E. Learning		

7. Student Evaluation:

7.1 Student Evaluation Method:

No.	Evaluation Method	Competencies	LOs
1	Competer Merks (Quizzos Chapts Departs)	C3	b1, c2
1	Semester Works (Quizzes, Sheets, Reports)	C 9	d2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

		C13	a1
		C14	a1, b1, c1
		C9	d2
2	Mid-Term Exam	C13	a1
		C14	a1, b1, c1
		C3	b1, c2
3	Final-Term Exam	C 9	d2
3		C13	a1
		C14	a1, b1, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester Works (Quizzes, Sheets, Reports)	4 th , 11 th
2	Mid-Term Exam	8 th
3	Final-Term Exam	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Semester Works (Quizzes, Sheets, Reports)	20%
2	Mid-Term Exam	20%
3	Final-Term Exam	60%
	Total	100%

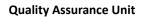
8. List of References:

No.	Reference List						
1	Wiley-Blackwell. Code of Practice for Project Management for Construction and						
	Development. Chartered Institute of Building (Great Britain).						
2	Kerzner, Harold. Project Management Workbook. A System Approach to Planning, Scheduling, and Control.						
3	de Marco, A. Project Management for Facility Constructions A Guide for Engineers, and Architects.						
4	Project Management Institute and Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK Guide).						
5	Lester, Albert. Project Management, Planning, and Control. Managing Engineering, Construction, and Manufacturing Projects to PMI, APM, and BSI Standards.						
6	Vanhoucke, M. Management for Professionals Integrated Project Management and Control.						

9. Facilities Required for Teaching and Learning:

	Facility						
1	Lecture Classroom	3	White Board				
2	Seminar	4	Data Show System				

10. Matrix of Knowledge and Skills:


Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Торіс	Aims	Competencies	LOs
1	Construction Contracting for Contracts, Architects, and Owners	9	C14	a1, b1, c1
2	Organization and Administration Industry Structure	6, 8	C9 C13	d2 a1
3	Construction Contracts, Bonds, and Insurance	9	C14	a1, b1, c1
4	Planning, Estimating, and Control	6, 8	C9 C13	d2 a1
5	Quantity Takeoff and Pricing	6, 8	C3 C9 C13	b1, c2 d2 a1
6	Labor, Equipment, Excavation and Concrete Estimate	6, 8	C3 C9 C13	b1, c2 d2 a1
7	Proposal Preparation	9	C14	a1, b1, c1
8	Scheduling, Accounting, and Cost Control	6, 8	C3 C9 C13	b1, c2 d2 a1
9	Contract Documents to Prepare Detailed Estimate	9	C14	a1, b1, c1

Course Coordinator: Prof. Dr. Mohamed Elkiki **Head of Department:** Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Cost Analysis for Structure Projects (CIE515)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Cost Analysis for Structure Projects
Course Code	CIE515
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Prerequisite	Complete 100 CH

Tooching House	Lectures	Tutorial	Practical		
Teaching Hours	2	2	-		

2. Course Aims:

No.	Aims
6	Analyze data from the intended tests to manage resources creatively.
8	Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.

3. Competencies:

Competencies	Learning Outcomes (LOs)		
C3 Apply engineering design processes	b1 Judge engineering decisions considering balanced		
to produce cost-effective solutions that	costs, benefits, safety, quality, reliability, and		
meet specified needs with	environmental impact.		
consideration for global, cultural, social,	c1 Incorporate economic, societal, global,		
economic, environmental, ethical, and	environmental, and risk management factors into		
other aspects as appropriate to the	design.		
discipline, and within the principles and	c2 Applying engineering design procedures to generate		
contexts of sustainable design and	cost-effective solutions while adhering to sustainable		
development.	design and development principles and contexts.		
C5 Practice research techniques and			
methods of investigation as an inherent	c1 Prepare technical reports.		
part of learning.			
C9 Use creative, innovative, and flexible	d2 Effectively manage tasks, time, and resources.		
thinking and acquire entrepreneurial	Litectively manage tasks, time, and resources.		

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

and leadership skills to anticipate and	
respond to new situations.	
C13 Plan and manage construction	
processes; address construction defects,	
instability, and quality issues; maintain	a1 Define the plan and manage the construction
safety measures in construction and	process.
materials; and assess the environmental	
impacts of projects.	

4. Course Contents:

No	Topics	Lecture	Tutorial	Practical
1	Direct and Indirect Costs	4	4	-
2	Collective Systems, and Comparisons Between Projects	8	8	-
3	Fundamentals of Cost Analysis for Wood, Steel, and Concrete Buildings	6	6	-
4	Preparing Projects and Report Writing	6	6	-
5	Case Study	4	4	-
	Total	28	28	-

5. Teaching and Learning Methods:

No ·	Topics	Fa ce -T o- Fa ce Le ct ur e	O nli ne Le ct ur e	Fli pp ed Cl as sr oo m	Pr es en ta ti on an d M ov ie s	Di sc us si on	Pr ob le m- So lvi ng	Br ai n St or mi ng	Pr oj ec ts	Sit e Vi sit s	Se If-Le ar ni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
1	Direct and Indirect Costs	V				V									
2	Collective Systems, and Comparisons Between Projects		V		V										
3	Fundamentals of Cost Analysis for		V				V								

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	Wood, Steel, and Concrete Buildings								
4	Preparing Projects and Report Writing	√		√					
5	Case Study					1			

6. Teaching and Learning Methods for Disabled Students:

No	Teaching Method	Reason
1	Presentation of The Course in Digital Material	Better Access at Any Time
2	Wed Communication with Students	Better Communication with Certain Cases
3	Asking Small Groups to Do Assignments; Each Composed of Low, Medium, and High-Performance Students	Knowledge and Skills Transfer Among Different Levels of Students
4	An Electronic Model System for The Institution	E. Learning

7. Student Evaluation:

7.1 Student Evaluation Method:

No.	Evaluation Method	Competencies	LOs
		C3	b1, c1, c2
_	Compostor Morles (Oviers of Charte Bornarte)	C5	c1
1	Semester Works (Quizzes, Sheets, Reports)	C9	d2
		C13	a1
		C3	b1, c1, c2
2	Mid-Term Exam	C 9	d2
		C13	a1
		C3	b1, c1, c2
3	Final-Term Exam	C 5	c1
3	FIIIdi-TETTII EXATT	C 9	d2
		C13	a1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester Works (Quizzes, Sheets, Reports)	4 th , 11 th
2	Mid-Term Exam	8 th
3	Final-Term Exam	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Semester Works (Quizzes, Sheets, Reports)	20%
2	Mid-Term Exam	20%
3	Final-Term Exam	60%

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Total	100%

8. List of References:

No	Reference List
1	Wiley-Blackwell. Code of Practice for Project Management for Construction and Development. Chartered Institute of Building (Great Britain).
2	Kerzner, Harold. Project Management Workbook. A System Approach to Planning, Scheduling, and Control.
3	de Marco, A. Project Management for Facility Constructions A Guide for Engineers, and Architects.
4	Project Management Institute and Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK Guide).
5	Lester, Albert. Project Management, Planning, and Control. Managing Engineering, Construction, and Manufacturing Projects to PMI, APM, and BSI Standards.
6	Vanhoucke, M. Management for Professionals Integrated Project Management and Control.

9. Facilities Required for Teaching and Learning:

Fa	cility		
1	Lecture Classroom	3	White Board
2	Seminar	4	Data Show System

10. Matrix of Knowledge and Skills:

No.	Торіс	Aims	Competencies	LOs
1	Direct and Indirect Costs	6, 8	C3	b1, c1, c2
2	Collective Systems, and Comparisons Between Projects	6, 8	C3 C9 C13	b1, c1, c2 d2 a1
3	Fundamentals of Cost Analysis for Wood, Steel, and Concrete Buildings	6, 8	C3 C9 C13	b1, c1, c2 d2 a1
4	Preparing Projects and Report Writing	6, 8	C5	c1
5	Case Study	6, 8	C3 C5 C9 C13	b1, c1, c2 c1 d2 a1

Course Coordinator: Prof. Dr. Mohamed Elkiki **Head of Department:** Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

<u>Design of Earthquake Structures</u> (CIE516)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Design of Earthquake Structures
Course Code	CIE516
Year/Level	Level 5
Specialization	Major
Authorization Date of Course Specification	-
Pre-request	Complete 100 h

To aching house	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims:

No.	Aims
7	Achieve an optimum design of Reinforced Concrete and Steel Structures, by using elastic theory and practical methods for analysis and design earthquake structures.
10	Use the techniques, skills, and codes of practice effectively and professionally in Designing earthquake structures.

3. Intended Learning Outcomes (LO'S):

Competencies	Learning Outcomes (LO'S)
C6 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	a1 Show the appropriate and sustainable technologies for design of reinforced concrete and metallic structures.
C11 Select appropriate and sustainable technologies for construction of buildings, infrastructures and water structures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.	a1 Recognize the different engineering principles related to the design of reinforced concrete and metallic structures to geotechnical and foundations. a2 Summarize, appropriate and sustainable technologies for construction and design of reinforced concrete and metallic structures to geotechnical and foundations

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C12 Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.

b1 Achieve an optimum design of reinforced concrete and metallic structures to geo-technical and foundations

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Causes of earthquakes	2	2	-
2	Seismic waves, scales of earthquakes	4	4	-
3	Equation of motion for single degree of freedom and multi-degree of freedom systems	4	4	-
4	Structural behavior under random forces	4	4	-
5	Spectral analysis depending on soil conditions	4	4	-
6	Modal analysis for multi strong buildings	4	4	-
7	Design principles for earthquake structures according to the Egyptian code	6	6	-
	Total	28	28	-

5. Teaching and learning methods:

Topics	Fa ce to fac e Le ct ur e	OnlineLecture	Fli pe d Cl as sr o m	Pr es en tat ion an d mo vie s	D i s c u s s i o n	b I e m s o I v	B rainstorming	Projects	Si te vi sit s	Sel f-le arn ing an d Re sea rch	C o o p e r a ti v e	D i s c o v e ri n g	M odeling	l a b
Causes of earthquakes	х	х			х	х	Х							
Seismic waves, scales of earthquakes	х	х			x	х	х							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Equation of motion for single degree of freedom and multi-degree of freedom systems	х	х		х	x	х				
Structural behavior under random forces	х	х		х	х	х				
Spectral analysis depending on soil conditions	х	х		х	х	х				
Modal analysis for multi strong buildings	х	х		х	х	х				
Design principles for earthquake structures according to the Egyptian code	х	х		x	x	x				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason	
1	Presentation of the course in digital material	Better access any time	
2		Knowledge and skills transfer among different level of students.	

7. Student evaluation:

7.1 Student evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Mid Term Examination	C6	a1
1	Mild Term Examination	C11	a1
2	Semester work	C11	a1, a2
		C6	a1
3	Final Term Examination	C11	a1, a2
		C12	b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester work	2nd,7th, 9th
2	Mid Term examination	8th
3	Final term examination	15 <i>t</i> ħ

7.3 Weighting of Evaluation:

No. Evaluation method	Weights
-----------------------	---------

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total 100%	

8. List of References:

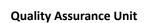
No.	Reference List
1	Course notes: Are delivered during the lecture, including handout materials such as solved problems, design charts, tables, etc.
2	Essential books (textbooks / design codes): Egyptian Code for Design and Construction of Reinforced Concrete Structures 2032001. Design Aids and Examples in Accordance with the Egyptian Code for Design and Construction of Reinforced Concrete Structures 203-2018. Seismic Design of Concrete Buildings to Eurocode, Michael Fardis, Eduardo Carvalho, Peter Fajfar · 2018 Seismic Isolation, Structural Health Monitoring, Azer A. Kasimzade, Erdal Şafak, Carlos E. Ventura · 2018 Structural Dynamics in Earthquake and Blast Resistant Design, BK Raghu Prasad · 2020
3	Recommended books: Chu-Kia Wang and Charles G. Salmon, "Reinforced Concrete Design," 4th Edition, Harper and Row Publishers, New York, 2018.

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data show system

10. Matrix of knowledge and skills of the course:

No.	Торіс	Aims	Competencies	LO's
1	Causes of earthquakes	7	C6	a1
2	Seismic waves, scales of earthquakes	10	C11	a1
3	Equation of motion for single degree of freedom and multi-degree of freedom systems	10	C11 C12	a1 a1, b1
4	Structural behavior under random forces	10	C11	a2
5	Spectral analysis depending on soil conditions	10	C11	a1
6	Modal analysis for multi strong buildings	10	C11	a1, a2


Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7	Design principles for earthquake structures according to the Egyptian code	10	C12	a1, b1

Course Coordinator: Dr. Rafeek Wadieh

Head of Department: Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

<u>Design of Marine Platforms</u> (CIE517)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Design of Marine Platforms
Course Code	CIE517
Year/Level	Level 5
Specialization	Major
Authorization Date of Course Specification	-
Pre-request	Complete 100 h

Tooching house	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims:

No.	Aims
4	Apply knowledge of mathematics, science, engineering concepts, and construct structures to solve fundamental engineering problems for design harbors and marine structures.
7	Achieve an optimum design of marine platforms
10	Select appropriate and sustainable technologies for construction of of marine platforms

3. Competencies:

Competencies	Learning outcomes (LO'S)
C2 Develop and conduct appropriate analyze and interpret for coastal data to draw conclusions.	b3 Analyze and interpret data
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, economic, environmental, ethical, and other aspects as appropriate the principles and contexts of sustainable design and development.	a1 Learn the general principles of design techniques specific to harbors and marine
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	codes of practice, and standards, as well as

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C6 Plan, supervise and monitor implementation of engineering projects, taking into consideration other requirements	
C11 Select appropriate and sustainable technologies for construction of marine platforms	a2 Summarize, appropriate and sustainable technologies for construction of marine structures.
C12 Achieve an optimum design of marine structures and Harbors.	b1 Achieve an optimum design of marine structures.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Marine platform (definition – types)	6	6	-
2	Loads affecting the marine platforms – tide and wind forces	8	8	
2	Loads affecting the marine platforms	6	6	-
3	Design of fixed marine platforms	8	8	-
	Total	28	28	-

5. Teaching and learning methods:

Topics	Face-to-face-le-ct-ure	On lin e lec tur e	FI ip ped CI ass room	Presentation and movies	D is c u ss io n	Problem solvings	B ra in st o r m in g	P oj e ct s	Si te Vi si ts	S el f le ar in g a n d R e s e ar c h	C o p er at iv e	D is c o v er in g	M o d el in g	L a b
Marine platform (definition – types)	Х	Х			х	Х								

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Loads affecting the marine platforms – tide and wind forces		х	х	х	х				
Loads affecting the marine platforms	х	х		х	х				
Design of fixed marine platforms	х	х		х	х				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material.	Better access any time.
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different levels of students.

7. Student assessment:

7.1 Student Assessment Methods:

No.	Evaluation Method	Competencies	LOs
1	Mid Term Examination (written/ online)	C11	a2
	Formative (avience anline avience	C12	b2
l / l ` `	Formative (quizzes- online quizzes-	C3	a1
	presentation)	C4	a1
		C3	a1
3	Final Term Examination (written)	C4	a1
		C11	a2

7.2 Assessment Schedule:

No	Assessment Method	Weeks
1	Mid Term Examination (written/ online)	8th
2	Practical/ Oral Examination	15th
3	Formative (quizzes- online quizzes presentation-Tutorial and report assessment)	Every week
4	Final Term Examination (written)	Decided by Faculty Council

7.3 Weighting of Assessments:

No	Assessment Method				
1	Mid Term Examination (written/ online)	20%			
2	Formative (quizzes- online quizzes presentation Tutorial and report assessment)	20%			

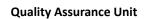
Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3	Final Term Examination (written)	60%
	Total	100%

8. List of References:

No.	Reference List
1	Carl A. Thoresen, port Designers Handbook Third edition, 2018
	Gregory Tsinker, Handbook of port and Harbor Engineering: Geotechnical and structural and structural Aspects, 2018.

9. Facilities required for teaching and learning:


No.	Facility
1	Seminar
2	White Board
3	Data Show system

10. Matrix of knowledge and skills of the course:

No.	Торіс	Aims	Competencies	LO's
1	Marine platform (definition – types)	1	C11	a2
			C12	b1
2	Loads affecting the marine platforms – tide and wind	1	C3	a1
	forces		C11	a2
3	loads affecting the marine platforms	1	C3	a1
			C2	b3
4	design of fixed marine platforms	1	C4	a1
			C6	a1

Course Coordinator: Prof. Dr. Osami Rageh Head of Department: Prof. Dr. Mohamed Elkiki

<u>Design of Shell Structures</u> (CIE519)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Design of Shell Structures
Course Code	CIE519
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre-request	Complete 100 h

Teaching hours	Lectures	Tutorial	Practical
	2	1	-

2. Course Aims:

No.	Aims
4	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.
7	Achieve an optimum design a system for components, process, constraints, construct, and protect all types of shell structures.
10	For reinforced concrete structures, select appropriate and sustainable technologies by applying a full range of civil engineering fields such as structural analysis and mechanics, material properties, hydrology and fluid mechanics.

Intended Learning Outcomes (LO'S):

5. Intended Learning Outcomes (LO 3).	
Competencies	Learning Outcomes (LO'S)
C2 Develop and conduct appropriate experimentation	a1 Define, basic characteristics,
and/or simulation, analyze and interpret data, assess, and	properties, concepts, and techniques
evaluate findings, and use statistical analyses and	of structural analysis and mechanics,
objective engineering judgment to draw conclusions.	properties, and strength of materials.
C9 Use creative, innovative, and flexible thinking and	d1 Think creatively in solving
acquire entrepreneurial and leadership skills to anticipate	problems of design.
and respond to new situations.	problems of design.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C12 Achieve an optimum design of Reinforced Concrete b1 Achieve an optimum design of and Steel Structures, Foundations and Earth Retaining Reinforced Concrete structures. Structures.

Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	forces and stresses affecting the shell structures	8	8	-
2	analysis of shell structures	10	10	-
3	design of shell structures	10	10	-
	Total	28	28	-

Teaching and learning methods: 5.

5. leaching and i	Cuiiii	<u>.</u>	ciioa	.										
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
forces and stresses affecting the shell structures		х			x			х						х
analysis of shell structures		х			х			х						х
design of shell structures		х			х			х						х

Teaching and learning methods for disabled students: 6.

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different level of students.

Student evaluation: 7.

7.1 Student evaluation method:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Evaluation Method	Competencies	LO's
1	Mid Torm Evamination	C2	a1
	Mid Term Examination	C 9	d1
2	Semester work	C 9	d1
		C2	a1
3	Final Term Examination	C9	d1
		C12	b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester work	2nd, 7th, 9th
2	Mid Term examination	8th
3	Final term examination	15 <i>t</i> h

7.3 Weighting of Evaluation:

No.	Evaluation method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference List
	Essential books:
1	Design Principles and Analysis of Thin Concrete Shells, Iakov Iskhakov, Yuri Ribakov · 2020
	Processing of Slender Concrete Shells – Fabrication, Eisenbach, Philipp · 2018
	Recommended books:
2	Theory and design of concrete shells by Dr. BBINOY KUMARI CHATTERIEE.
	Reinforced concrete designer's handbook by CHARL - REYNOLDS

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

10. Matrix of knowledge and skills of the course:

No. Topic	Aims	Competencies	LO's
-----------	------	--------------	------

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	forces and stresses affecting the shell structures	7	C2	a1
2	analysis of shell structures	10	C2 C9	a1 d1
3	design of shell structures	10	C9 C12	d1 b1

Course Coordinator: Dr. Rafeek Wadieh

Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Engineering Project Evaluation (CIE520)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Engineering Project Evaluation
Course Code	CIE520
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Prerequisite	Complete 100 CH

Tooching House	Lectures	Tutorial	Practical
Teaching Hours	2	2	-

2. Course Aims:

No.	Aims
6	Analyze data from the intended tests to manage resources creatively.
8	Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.

Competencies	Learning Outcomes (LOs)						
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline, and within the principles and contexts of sustainable design and development.	 a3 Recognizes the various construction defects, instability, and quality issues and assesses the environmental impacts of projects. b1 Judge engineering decisions considering balanced costs, benefits, safety, quality, reliability, and environmental impact. c1 Incorporate economic, societal, global, environmental, and risk management factors into design. 						
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements,	a1 Describe quality assurance systems, codes of practice, standards, health and safety regulations, and environmental concerns.						

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

environmental issues, and risk	c2 Use fundamental organizational and project
management principles.	management abilities.
C13 Plan and manage construction	
processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.	(a1) Define the plan and manage the construction process.(c1) Assess the environmental impacts of projects.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Fundamentals of Project Appraisal and Feasibility Study	6	6	-
2	Planning of Civil Engineering Projects	6	6	-
3	Economic Analysis of Civil Engineering Projects	6	6	-
4	Introduction to Environmental and Social Impact Assessment	6	6	-
5	Case Studies on Civil Engineering Project Appraisal	4	4	-
	Total	28	28	-

5. Teaching and Learning Methods:

No.	Topics	Fa ce- Fa ce Le ct ur e	On lin e Le ct ur e	Fli pp ed Cl as sr oo m	Pr es en tat io n an d M ov ies	Di sc us sio n	Pr ob le m- So lvi ng	Br ai n St or mi ng	Pr oj ec ts	Sit e Vis its	Sel f-L ea rni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
1	Fundamentals of Project Appraisal and Feasibility Study	V			V										
2	Planning of Civil Engineering Projects		\checkmark												
3	Economic Analysis of Civil Engineering Projects	√			√										

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4	Introduction to Environmental and Social Impact Assessment	V				V		
5	Case Studies on Civil Engineering Project Appraisal	$\sqrt{}$			√			

6. Teaching and Learning Methods for Disabled Students:

<u> </u>	activity area learning recentled for broadled stade.	1001				
No.	Teaching Method	Reason				
1	Presentation of The Course in Digital Material	Better Access at Any Time				
2	Wed Communication with Students	Better Communication with Certain Cases				
3	Asking Small Groups to Do Assignments; Each Composed of Low, Medium, and High-Performance Students	Knowledge and Skills Transfer Among Different Levels of Students				
4	An Electronic Model System for The Institution	E. Learning				

7. Student Evaluation:

7.1 Student Evaluation Method:

No.	Evaluation Method	Competencies	LOs
		C3	a3, b1, c1
1	Semester Works (Quizzes, Sheets, Reports)	C4	a1, c2
		C13	a1, c1
		C3	a3, b1, c1
2	Mid-Term Exam	C4	a1, c2
		C13	a1, c1
		C3	a3, b1, c1
3	Final-Term Exam	C4	a1, c2
		C13	a1, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester Works (Quizzes, Sheets, Reports)	4 th , 11 th
2	Mid-Term Exam	8 th
3	Final-Term Exam	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Semester Works (Quizzes, Sheets, Reports)	20%
2	Mid-Term Exam	20%
3	Final-Term Exam	60%
	Total	100%

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

8. List of References:

No.	Reference List								
1	Wiley-Blackwell. Code of Practice for Project Management for Construction and								
	Development. Chartered Institute of Building (Great Britain).								
2	Kerzner, Harold. Project Management Workbook. A System Approach to Planning,								
	Scheduling, and Control.								
2	de Marco, A. Project Management for Facility Constructions A Guide for Engineers, and								
3	Architects.								
	Project Management Institute and Project Management Institute. A Guide to the Project								
4	Management Body of Knowledge (PMBOK Guide).								
_	Lester, Albert. Project Management, Planning, and Control. Managing Engineering,								
5	Construction, and Manufacturing Projects to PMI, APM, and BSI Standards.								
6	Vanhoucke, M. Management for Professionals Integrated Project Management and Control.								

9. Facilities Required for Teaching and Learning:

Facility						
1	Lecture Classroom	3	White Board			
2	2 Seminar		Data Show System			

10. Matrix of Knowledge and Skills:

No.	Торіс	Aims	Competencies	LOs			
	Fundamentals of Project Appraisal and	6, 8	C3	a3, b1, c1			
1	1 Feasibility Study		C4	a1, c2			
	reasionity study		C13	a1, c1			
2	Planning of Civil Engineering Projects	6, 8	C13	a1, c1			
3	Economic Analysis of Civil Engineering Projects	6, 8	C3	a3, b1, c1			
	Introduction to Environmental and Social Impact		C3	a3, b1, c1			
4	·	6, 8	C4	a1, c2			
	Assessment		C13	a1, c1			
	Casa Studios on Civil Engineering Project		C3	a3, b1, c1			
5	Case Studies on Civil Engineering Project	6, 8	C4	a1, c2			
	Appraisal		C13	a1, c1			

Course Coordinator: Prof. Dr. Mohamed Elkiki Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Environmental Pollution Control (CIE521)

1. Basic Information:

Program Title	Civil Engineering Program				
Department Offering the Program	Civil Engineering Department				
Department Responsible for the Course	Civil Engineering Department				
Course Title	Environmental Pollution Control				
Course Code	CIE521				
Year/Level	Level 5				
Specialization	Minor – Elective Course				
Authorization Date of Course Specification	-				
Pre- request	Complete 100 h				

Tarabina bassa	Lectures	Tutorial	Practical			
Teaching hours	2	2	-			

2. Course Aims

No.	Aims							
	Use the techniques, skills, and current engineering tools required for wastewater							
4	engineering practice by taking full responsibility for one's own learning and development,							
	participating in lifelong learning, and demonstrating the ability to pursue research studies.							
7	Achieve an optimum design for wastewater treatment plants and sewerage system.							
10	Plan and manage construction processes for wastewater treatment plants, pollution							
10	control and assess environmental impacts of projects.							

Competencies	Learning Outcomes (LO'S)							
C1 Identify, formulate, and solve complex	a3 Explain the basic principles of wastewater							
engineering problems by applying	engineering works.							
engineering fundamentals, basic science, b2 Using scientific concepts and theories that are								
and mathematics.	relevant to wastewater and pollution control works.							
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for environmental, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	 a2 Understand the professional ethics and impacts of engineering solutions on the environment. a3 Recognize the various construction defects, instability, and quality issues and assess the project's environmental impacts. c1 Incorporate environmental, and pollution control into the design. 							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C12 Achieve an optimum design of wastewater treatment works for environmental control and protection.	b2 Achieve an optimum design of wastewater treatment plants and sewerage systems.
C13 Plan and manage appropriate processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects	c1 Assess the environmental impacts of different types of projects.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Introduction to the Soil, Water, and Air pollution	2	2	-
2	Sewage sources as a pollution source	2	2	=
3	Sewage characteristics, and detailed planning and design of sewerage system	2	2	
4	Design of pump stations	2	2	-
5	Wastewater treatment plant design (Primary treatment, deceleration tank, screen, approach channel, grit removal chamber, and primary sedimentation tank)		4	-
6	Wastewater treatment plant (Biological treatment)	4	4	-
7	Wastewater treatment plant (Tertiary treatment)	4	4	-
8	Sludge treatment, disposal, and reuse	4	4	-
9	Introduction to environmental control and assessment of		4	
	Total	28	28	-

5. Teaching and learning methods:

Topics	Fac e fac e lec tur e	On lin e lec tur	Fli pp ed cla ssr oo	n an d	Dis cus sio n	obl em sol vin	in sto rm	Pr oje cts	Sit e visi ts	l d l	Co op era tiv e	CO	od eli	ıaıı
Introduction to the Soil, Water, and Air pollution	х			х	х			х		Х				х
Sewage sources as a pollution source	х			х	х			х						х

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Sewage characteristics, and detailed planning and design of sewerage system	х		х	х		х			х
Design of pump stations	х		х	х		х	х		х
Wastewater treatment plant design (Primary treatment, deceleration tank, screen, approach channel, grit removal chamber, and primary sedimentation tank)	x		x	x		x			х
Wastewater treatment plant (Biological treatment)	х		х	х		х			х
Wastewater treatment plant (Tertiary treatment)	х		х	х		х	х		х
Sludge treatment, disposal, and reuse	х		х	х		х			х
Introduction to environmental control and assessment of environmental impact. Case studies	х		x	х		х			х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain
		cases
	Asking small groups to do assignments; each	Knowledge and skills transfer among
3	composed of low, medium, and	different levels of students
	high-performance students	
4	Electronic model system for the Institution.	E. learning

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C1	a3, b2
		C3	a2, a3, c1
		C1	a3, b2
2	Semester work (quizzes, sheets, reports)	C3	a2, a3, c1
2		C12	b2, c1
		C13	c1
		C1	a3, b2
3	Final term examination	C3	a2, a3, c1
3		C12	b2, c1
		C13	c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8^{th}
2	Semester work	Continuous

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	Course notes: Lecture notes prepared by the course coordinator. Solved examples.
2	Essential books (textbooks): ● الكود المصري لأسس تصميم وتنفيذ محطات تنقية مياه الشرب والصرف الصحي ومحطات الرفع – قرار وزاري رقم 169 لسنة 1997-الطبعة الثالثة 2004.
3	Recommended books Wastewater Engineering: Treatment and Reuse (McGraw-Hill Series in Civil and Environmental Engineering)–16 May 2002-by N/A Metcalf & Eddy, Inc., George Tchobanoglous, Franklin Burton, H. David Stensel
4	1- د/محمد صادق العدوى "هندسة امداد المياه" دار صادق للنشر – كلية الهندسة جامعة القاهرة 2- د/محمد سعيد الخولى "الهندسة الصحية للمبانى " – كلية الهندسة جامعة عين شمس 3- د/محمد على على فرج "الهندسة الصحية" منشأة المعارف بالاسكندرية – كلية الهندسة جامعة الاسكندرية 4- د/احمد فاضل عشرى "امداد المدن بالمياه – تنقية مياه الشرب – معالجة المخلفات السائلة" – كلية الهندسة – قسم الاشغال العامة – جامعة المنصورة
5	Periodicals, Web sites, etc. www.awwa.org www.epa.gov www.wef.org

9. Facilities required for teaching and learning:

Facility							
1	Lecture classroom	3	White board				
2	Seminar	4	Data show system				

10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Introduction to the Soil, Water, and Air pollution	4	C1	a3, b2
2	Sewage sources as a pollution source	4, 7	C1, C3	a2, a3, c1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

				· · · · · · · · · · · · · · · · · · ·
3	Sewage characteristics, and detailed planning and	4, 7,	C12, C13	h2 a1
	design of sewerage system	10		b2, c1
4	Design of pump stations	7, 10	C3, C12, C13	a2, a3, c1, b2
5	Wastewater treatment plant design (Primary treatment, deceleration tank, screen, approach channel, grit removal chamber, and primary sedimentation tank)	7, 10	C3, C12, C13	a2, a3, c1, b2
6	Wastewater treatment plant (Biological treatment)	7, 10	C3, C12, C13	a2, a3, c1, b2
7	Wastewater treatment plant (Tertiary treatment)	7, 10	C3, C12, C13	a2, a3, c1, b2
8	Sludge treatment, disposal, and reuse	7, 10	C1, C3, C12, C13	a2, a3, c1, b2
9	Introduction to environmental control and assessment of environmental impact. Case studies	7, 10	C1, C3	a2, a3, c1

Course Coordinator: Assoc. Prof. Dr. Medhat Elzahar **Head of Department:** Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Fiber Reinforced Cement Composites (CIE522)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Fiber Reinforced Cement Composites
Course Code	CIE522
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre- request	Complete 100 h

To a alaine a la accora	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims

No.	Aims
8	Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures, using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as properties and strength of materials
10	Select appropriate and sustainable technologies for construction of buildings, infrastructures and water structures, using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as properties and strength of materials

Competencies	Learning Outcomes (LO'S)		
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	features of construction material, as well as their use in sustainable technologies for		
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles	a1 Describe codes of practice, and standards, as well as health and safety regulations.		

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	 a3 Define contemporary engineering technologies and their applications in relation to disciplines. b1create methodical approaches when dealing with new and advancing technology.
C11 Select appropriate and sustainable technologies for construction of buildings, infrastructures and water structures, using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of properties and strength of materials	 a1 Recognize the fundamentals of properties and strength of materials, a2 Summarize, appropriate and sustainable technologies for construction of buildings,

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Fiber-reinforcement of cement-based matrices, continuous and discontinuous fibers, and meshes.	4	4	-
2	Fiber-reinforced concrete and Ferro-cement	2	2	-
3	Laminated cementations composites	2	2	-
4	Behavior and mechanical properties. Mechanics of fiber reinforcement	8	8	-
5	Constitutive models. High-strength, high-performance fiber composites.	4	4	-
6	Hybrid and smart composites	4	4	-
7	Lectures, projects and laboratory	4	4	-
	Total	28	28	-

5. Teaching and learning methods:

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
Fiber-reinforcemen t of cement-based	V			√	√	√	√						$\sqrt{}$	

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

matrices, continuous and discontinuous fibers, and meshes.											
Fiber-reinforced concrete and Ferro-cement	7			√	√	√				√	
Laminated cementations composites	√		√	7	√	√				√	
Behavior and mechanical properties. Mechanics of fiber reinforcement	√			√	\checkmark	\checkmark				√	
Constitutive models. High-strength, high-performance fiber composites.	V		V	V	V	V				V	
Hybrid and smart composites	V	V		V	√	√				V	
Lectures, projects, and laboratory	V	V	√	V	√	√		х		√	

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students
4	Electronic model system for the Institution.	E. learning

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midtorm avamination	C2	a2
	Midterm examination	C4	a3

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

		C11	a1
2	Competer work (quizzos chapte report)	C4	a1, b 1, a3
2	Semester work (quizzes, sheets, report)	C11	a2
		C4	a1, a3
3	Final term examination	C11	a2
		C2	a 2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8th
2	Semester work	all
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	High performance fiber reinforced cement composite / 2018 / gustavoj.puraa

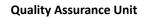
9. Facilities required for teaching and learning:

Facility								
1	Lecture classroom	3	White board					
2	Seminar	4	Data show system					

10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Fiber-reinforcement of cement-based matrices,	8,10	C2	a 2
	continuous and discontinuous fibers, and meshes.	6,10	C4	a3, a1
			C2	a 2
2	Fiber-reinforced concrete and Ferro-cement	8,10	C4	a1, a2
			C11	a1, a2
			C2	a 2
3	Laminated cementations composites	8,10	C4	a1, a2
			C11	a1, a2
4	Behavior and mechanical properties. Mechanics	8,10	C2	a 2
4	of fiber reinforcement	6,10	C4	a1, a2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta


			C11	a1, a2
	Constitutive models. High-strength,		C2	a 2
5	high-performance fiber composites.	8,10	C4	a1, a2
	Tilgii-periormance fiber composites.		C11	a1, a2
6	Hybrid and smart composites	8,10	C11	a1, a2
7	Lectures, projects, and laboratory	8,10	C11	a1, a2

Course Coordinator: Dr. Nesreen Elawadly **Head of Department:** Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Ground Water Hydraulics (CIE523)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Ground Water hydraulics
Course Code	CIE523
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre- request	Complete 100 h

Tooching house	Lectures	Tutorial	Practical	
Teaching hours	2	2	-	

2. Course Aims

No.	Aims
4	Use the techniques, skills, and current engineering tools required for the groundwater
4	hydraulics applications (aquifers systems, wells constructions operation and maintenance).
_	Achieve an optimum solution of groundwater problems and design abstraction
'	groundwater wells.
10	Select appropriate and sustainable technologies for construction of groundwater
10	wells, drilling and testing, saltwater intrusion mitigation.

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and	a2 Define the principles, basic properties, and features of
solve complex engineering	groundwater and the types of aquifers, saltwater intrusion.
problems by applying	b1 Estimating mechanics of flow through porous media.
engineering fundamentals,	b2 Using scientific concepts and theories that are relevant to
basic science, and	groundwater such as Darcy's law – application – direct of ground
mathematics.	water flow
C12 Achieve an optimum	
design of groundwater	b1 Achieve an optimum planning and design of seepage problem
abstraction wells, seepage	through dams and saltwater intrusion.
problem through dams,	b2 Achieve an optimum planning and design of groundwater
and saltwater intrusion	abstraction wells and drilling and testing of wells.
assessment.	

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Introduction – groundwater- types of aquifers	2	2	-
2	Mechanics of flow through porous media	4	4	-
3	Darcy's law – application – direct of ground water flow	4	4	-
4	Case studies (Seepage through dam – seepage through confined aquifer – seepage under a dike)	2	2	-
5	Steady and unsteady flow to wells – fully and partially penetrating of wells	4	4	-
6	Saltwater intrusion (potential flow theory – boundary effects – theory of images – numerical methods – analytical methods)	8	8	-
7	Practical aspects of well design	2	2	-
8	Drilling and testing	2	2	-
	Total	28	28	-

5. Teaching and learning methods:

5. Icacining and ican	. Teaching and rearring methods.													
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	del
Introduction – groundwater- types of aquifers	x	x			x	x	x							
Mechanics of flow through porous media	x	x			x	x	x							
Darcy's law – application – direct of ground water flow	Х	Х			Х	Х	х							
Case studies (Seepage through	х	х			х	х	x							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

dam – seepage through confined aquifer – seepage under a dike)										
Steady and unsteady flow to wells – fully and partially penetrating of wells	x	X		×	x	x				
Saltwater intrusion (potential flow theory – boundary effects – theory of images – numerical methods – analytical methods)	x	X		x	×	X				
Practical aspects of well design	х	х		х	х	x				
Drilling and testing	Х	Х		Х	х	Х				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason				
1	Presentation of the course in digital material	Better access any time				
2	Wed communication with students	Better communication with certain cases				
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students				
4	Electronic model system for the Institution.					

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Mid tarm avamination	C1	a2, b1, b2
	Mid-term examination	C12	b1,
,	Semester work	C1	a2, b1, b2
		C12	b1, b2
4	Final term examination	C1	a2, b1, b2
4		C12	b1, b2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	semester work	2 nd ,7 th , 9 th
2	Mid Term examination	8^{th}
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No. Evaluation Method		Weights		
1	Mid-term examination	20%		
2	Semester work	20%		
3	Final-term examination	60%		
	Total 100%			

8. List of References:

No.	Reference List				
1	El-Ghandour, H.A., (2020). "Analysis and Optimization of Saltwater Intrusion in Coastal Aquifers". M.Sc. Thesis, Irrigation and Hydraulics Dept., Faculty of Engineering, El-Mansoura				
University, P. 177.					
2	Todd, D.K., Mays, L.W., (2020). "Groundwater Hydrology". Willy India				
3	John H. Cushman, Daniel M. Tartakovsky. (2018) The Handbook of Groundwater				
	Engineering. Available on Taylor & Francis eBooks				
	El–Ghandour, H.A., (2018). "Analysis and Optimization of Saltwater Intrusion in Coastal				
4	Aquifers". M.Sc. Thesis, Irrigation and Hydraulics Dept., Faculty of Engineering, El-Mansoura				
	University, P. 177.				

9. Facilities required for teaching and learning:

	<u> </u>		
1	Lecture classroom	3	White board
2	Seminar	4	Data show system

10. Matrix of knowledge and skills of the course:

No	Торіс		Competencies	LO's
1	Introduction – groundwater- types of aquifers		C1	a2
2	Mechanics of flow through porous media		C1	a2, b1
3	3 Darcy's law – application – direct of ground water flow		C1	b2
4	Case studies (Seepage through dam – seepage through confined aquifer – seepage under a dike)	7	C12	b1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

5	Steady and unsteady flow to wells – fully and partially penetrating of wells	7	C12	b2
6	Saltwater intrusion (potential flow theory – boundary effects – theory of images – numerical methods – analytical methods)	4, 7	C1 C12	a2, b1
7	Practical aspects of well design	7, 10	C12	b2
8	Drilling and testing	7, 10	C12	b2

Course Coordinator: Assoc. Prof. Mohammed Gabr **Head of Department:** Prof. Mohammed Elkiki

Date of Approval: 2022.

Highway Materials and Construction (CIE524)

1. Basic Information:

Program Title	Civil Engineering Program		
Department Offering the Program	Civil Engineering Department		
Department Responsible for the Course	Civil Engineering Department		
Course Title	Highway Materials and Construction		
Course Code	CIE524		
Year/Level	Level 5		
Specialization	Minor – Elective Course		
Authorization Date of Course Specification	-		
Pre- request	Complete 100 h		

To a shine have	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims

No.	Aims
4	Master a broad range of engineering knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve engineering problems of varying complexity and variation.
7	Achieve an optimum design of civil engineering works such as: flexible pavement and rigid pavement
10	Select appropriate and sustainable technologies for construction of highways infrastructures experiment measurements and testing by applying a full range of civil engineering fields such as structural analysis and mechanics, properties, and strength of materials.

3. Competences.					
Competencies	Learning Outcomes (LO'S)				
C1 Identify, formulate, and solve	a3 Explain the basic principles of engineering for road				
complex engineering problems by	materials included hot mix asphalt (flexible pavement) and				
applying engineering	concrete mixture (rigid pavement).				
fundamentals, basic science, and	b2 Using scientific concepts and theories that are relevant to				
mathematics.	road materials to select the appropriate thickness of road				
	layers				
C11 Select appropriate and	a2 Summarize, appropriate and sustainable technologies for				
C11 Select appropriate and sustainable technologies for	roads construction and rehabilitation, bituminous materials,				
sustamable technologies for	and concrete mixtures.				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

construction road works and rehabilitation of roads.	
C12 Achieve an optimum design of pavement layers.	b2 Achieve an optimum design of flexible pavement and rigid pavement based on the appropriate selection of materials and their strengths

4. Course Contents:

No.	No. Topics		Tutorial	Practical
1	Application of soil classification methods, material characterization, sub-grade and sub-base stabilization, material variability and quality control		12	-
2	pavement evaluation and rehabilitation, highway construction		16	-
Total		28	28	-

5. Teaching and learning methods:

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
Application of soil classification methods, material characterization, sub-grade and sub-base stabilization, material variability and quality control	x	x			x	x	x							
pavement evaluation and rehabilitation, highway construction	х	х			х	х	х							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different level of students.

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Mid torm evamination	C1	a3, b2
1	Mid-term examination	C11	a2
2	Compostory	C11	a2
	Semester work	C12	b2
		C1	a3, b2
3	Final term examination	C11	a2
		C12	b2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester work	2nd,7th, 9th
2	Mid Term examination	8th
3	Final term examination	15 <i>t</i> h

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference List
	Essential books (textbooks / design codes):
1	Egyptian Code for Design and Construction of Reinforced Concrete Structures 203-2018.
1	Design Aids and Examples in Accordance with the Egyptian Code for Design and
	Construction of Reinforced Concrete Structures 203-2018.
2	Advanced structural materials, 2020

9. Facilities required for teaching and learning:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Lecture classroom	3	White board
2	Seminar	4	Data show system

10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Application of soil classification methods, material characterization, sub-grade and sub-base stabilization, material variability and quality control	1, 7	C1 C11	a3, b2 a2
2	pavement evaluation and rehabilitation, highway construction	1, 7	C1 C11 C12	a3, b2 a2 b2

Course Coordinator: Assoc. Prof. Dr. Alaa Gabr **Head of Department:** Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Modern Structure Materials (CIE525)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Modern Structure Materials
Course Code	CIE525
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre-request	Complete 100 h

Tanahina hausa	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims

No.	Aims
8	Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures, using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as properties and strength of materials
10	Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.

Competencies	Learning Outcomes (LO'S)
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	 a2 Define the principles, basic properties, and features of construction material, as well as their use in sustainable technologies for construction of buildings. c2 Develop suitable experimentation and/or simulation.
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles	a1 Describe codes of practice, and standards, as well as health and safety regulations.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	 a3 Define contemporary engineering technologies and their applications in relation to disciplines. b1Create methodical approaches when dealing with new and advancing technology
C11 Select appropriate and sustainable technologies for construction of buildings, infrastructures and water structures, using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of properties and strength of materials	 a1 Recognize the fundamentals of properties and strength of materials, a2 Summarize, appropriate and sustainable technologies for construction of buildings.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	General introduction for the technological development of material science	8	8	-
2	general classification of the modern materials in the structure field – compound materials and their applications	10	10	-
3	carbon fibers and its use in structures – insulating materials – ant fire materials	10	10	-
	Total	28	28	-

5. Teaching and learning methods:

J. Teaching and lear	reaching and rearring methods.													
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
General introduction for the technological development of material science	V	V			V	V	V							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

general classification of the modern materials in the structure field – compound materials and their	√	√		√	√	√				
applications carbon fibers and its use in structures — insulating materials — ant fire materials	√	√		√	√	√				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	i knowledge and skills fransfer among i
4	Electronic model system for the Institution.	E. learning

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
		C2	a2, c2
1	Midterm examination	C4	a1, a3
		C11	a1, a 2
	Semester work (quizzes, sheets, report)	C2	a2, c2
2		C4	a1, a 3
		C11	a1, a2
		C2	a2, c2
3	Final term examination	C4	a1, a3
		C11	a1, a2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8th
2	Semester work	all

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3 Final term examination	15 th
--------------------------	------------------

7.3 Weighting of Evaluation:

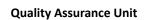
No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

No.	Reference List						
	Essential books (textbooks / design codes):						
	Egyptian Code for Design and Construction of Reinforced Concrete Structures						
1 203-2018.							
	Design Aids and Examples in Accordance with the Egyptian Code for Design and						
	Construction of Reinforced Concrete Structures 203-2018.						
2	Advanced structural materials, 2010						

9. Facilities required for teaching and learning:

	Facility						
1	Lecture classroom	3	White board				
2	Seminar	4	Data show system				


10. Matrix of knowledge and skills of the course:

No	Topic	Aims	Competencies	LO's
1	General introduction for the technological development material science	8,10	C4	a3, a1
2	general classification of the modern materials in the structure field – compound materials and their applications	8,10	C4 C11	a3 a1, a2
3	carbon fibers and its use in structures – insulating materials – ant fire materials	8,10	C11	a1, a2

Course Coordinator: Dr. Nesreen Elawadly **Head of Department:** Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Hydraulics Engineering (CIE526)

1. Basic Information:

Program Title	Civil Engineering Program		
Department Offering the Program	Civil Engineering Department		
Department Responsible for the Course	Civil Engineering Department		
Course Title	Hydraulic Engineering		
Course Code	CIE526		
Year/Level	Level 5		
Specialization	Minor – Elective Course		
Authorization Date of Course Specification	-		
Pre-request	Complete 100 h		

To object house	Lectures	Tutorial	Practical
Teaching hours	2	3	-

2. Course Aims:

No.	Aims
1	Master a broad range of engineering knowledge and specialized skills by applying theories and thinking to identify and solve engineering problems regarding to the applications of hydraulic engineering.
7	Achieve an optimum design for steady flow in pipelines (Basics), hydraulic analysis of pipeline networks, and unsteady flow in pipeline networks.
10	Select appropriate and sustainable technologies for the pipeline networks.

5. Competencies.	
Competencies	Learning outcomes (LO'S)
C1 Identify, formulate, and solve complex design of hydraulics engineering by applying engineering fundamentals, basic science, and mathematics. C11 Select appropriate and sustainable technologies for	a1 Describe the relevant mathematical principles and theories in the discipline concepts regarding the flow through orifices (types – time of filling and emptying tanks), and the flow over weirs. a2 Explain the principal types of the governing flow equations (Bernoulli and Continuity) theories; and the momentum equation and its applications fields. a2 Summarize, appropriate and sustainable technologies for
construction of the pipeline networks	the pipeline networks constructions.
C12 Achieve an optimum design of marine structures and Harbors.	b1 Achieve an optimum design of orifices and the pipeline networks.b2 Achieve an optimum design of the orifices and wires

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Governing equations (Bernoulli and Continuity) – Applications	4	4	-
2	Flow through orifices (types – equations – time of filling and emptying tanks)	4	4	-
3	Flow over weirs (types – equations)	4	4	-
4	Application of Momentum equation	2	2	-
5	Steady flow in pipelines (Basics) – Hydraulic analysis of pipe line networks	10	10	-
6	Unsteady flow in pipeline networks	4	4	-
	Total	28	28	-

5. Teaching and Learning Methods:

5. Teaching and Leaf														
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
Governing equations (Bernoulli and Continuity) — Applications	X	x			x	х	х							
Flow through orifices (types – equations – time of filling and emptying tanks)	х	х			х	х	х							
Flow over weirs (types – equations)	х	х			х	х	х							
Application of Momentum equation	х	х			х	х	х							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Steady flow in pipelines (Basics) – Hydraulic analysis of pipeline networks		х		х	х	х				
Unsteady flow in pipeline networks	х	х		х	х	х				

6. Teaching and Learning Methods of disabled Students:

	8						
No.	Teaching Method						
1	Additional Tutorials						
2	Online lectures and assignments						

7. Student assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	Competencies	LOs
		C1	a1, a2
1	Mid Term Examination (written)	C11	a2
		C12	b1, b2
		C1	a1, a2
2	Formative (quizzes- online quizzes- presentation)	C11	a2
		C12	b1, b2
		C1	a1, a2
3	Final Term Examination (written)	C11	a2
		C12	b1, b2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination (written/ online)	8th
2	Practical/ Oral Examination	15th
3	Formative (quizzes- online quizzes presentation-Tutorial and report assessment)	Every week
4	Final Term Examination (written)	Decided by Faculty Council

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination (written/ online)	20%
2	Formative (quizzes- online quizzes presentation-Tutorial and report assessment)	20%
3	Final Term Examination (written)	60%
	Total	100%

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

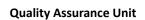
8. List of References:

No.	Reference List	
1	Fluid mechanics through problems R.J GARDE, New AGE publishers- 2018	
2	Flow in open channels K. Subramanya. Tata Mcgraw hill education private limited, NEW DELHI 2020	

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	Lab Facilities
3	White Board
4	Data Show System
5	Presenter

10. Matrix of Knowledge and Skills of the Course


No.	Topic	Aims	Competencie s	LO's
1	Governing equations (Bernoulli and Continuity) - Applications	1	C1	a2
2	Flow through orifices (types – equations – time of filling and emptying tanks)	7	C1 C12	a1 b1
3	Flow over weirs (types – equations)	7	C1 C12	a1 b2
4	Application of Momentum equation	1	C1	a2
5	Steady flow in pipelines (Basics) – Hydraulic analysis of pipeline networks	7, 10	C11 C12	a2 b1
6	Unsteady flow in pipeline networks	7, 10	C11 C12	a2 b1

Course Coordinator Assoc. Prof. Dr. Mohammed Gabr

Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Pavement Design (CIE527)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Pavement Design
Course Code	CIE527
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre- request	Complete 100 h

Teaching hours	Lectures	Tutorial	Practical
	2	2	-

2. Course Aims

21 COGISC / (1111)		
No.	Aims	
4	Use the techniques, skills, and current engineering tools required for design practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.	
7	Achieve an optimum design of pavement.	
10	Select appropriate and sustainable technologies for construction of pavement using numerical techniques.	

Competencies	Learning Outcomes (LO'S)
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles	a2 Summarize, appropriate of Pavement materials and sustainable technologies for construction of highways
C6 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	b1 interpret data derived from laboratory observation from equipment flow sheets, charts, and curves to interpret data derived from laboratory observation. c2 Acquire entrepreneurial skills.
C11 Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using	a1 Recognize the fundamentals of structural analysis and mechanics, properties and

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology, and fluid mechanics.

strength of pavement materials, stress analysis.

a2 Summarize, appropriate and sustainable technologies for construction of highways, infrastructures.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Characteristics of pavement loads.	4	4	-
2	Stress analysis in pavements.	4	4	-
3	Design practices, construction, rehabilitation, and maintenance.	4	4	-
4	Optimization of the design of rigid and flexible pavements systems.	4	4	-
5	Empirical and mechanistic stochastic structural subsystems.	4	4	-
6	Utility theory, serviceability concept, cost studies, traffic delay, environmental deterioration, rehabilitation, and maintenance optimization systems.	8	8	-
	Total	28	28	-

5. Teaching and learning methods:

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
Characteristics of pavement loads.	x	x			x	x	x							
Stress analysis in pavements.	х	х			х	х	х							
Design practices, construction,	х	х			х	х	х							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

-										
rehabilitation, and maintenance.										
Optimization of the design of rigid and flexible pavements systems.	х	х		х	х	х				
Empirical and mechanistic stochastic structural subsystems.	х	х		х	х	х				
Utility theory, serviceability concept, cost studies, traffic delay, environmental deterioration, rehabilitation, and maintenance optimization systems.	x	x		x	x	x				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material.	Better access any time.
2	Asking small groups to do assignments each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different levels of students.

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
		C4	a2
1	Mid-term examination	C6	b1, c2
		C11	a1, a2
	Semester work	C4	a2
2		C6	b1, c2
		C11	a1, a2
3	Practical Examination	C4	a2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

		C6 C11	b1, c2 a1, a2
	Final term examination	C4	a2
4		C6	b1, c2
		C11	a1, a2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester work	2nd,7th, 9th
2	Mid Term examination	8th
3	Practical Examination	14th
4	Final term examination	15 <i>t</i> h

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	10%
2	Semester work	20%
3	Practical Examination	10%
4	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	Khurmi, R.S. (2018). " A textbook of hydraulics, fluid mechanics and hydraulic machines" S.
	Chanel and company Ltd. P.990
2	Subramanya, K. (2018) "Flow in open channels" McGra- Hill Education (India). P.602
	Glenn E. Moglen. 2020. Fundamentals of Open Channel Flow. CRC Press. Available on Taylor
3	& Francis eBooks.

9. Facilities required for teaching and learning:

	Facility							
1	Lecture classroom	3	White board					
2	Seminar	4	Data show system					
5	Lab.							

10. Matrix of knowledge and skills of the course:

No	Topic	Aims	Competencies	LO's
			C4	a2
1	Characteristics of pavement loads	7	C6	b1, c2
			C11	a1, a2
2	Chance and basis in accomments	7	C4	a2
2	Stress analysis in pavements	/	C6	b1, c2

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

			C11	a1, a2
	Design practices, construction,		C4	a2
3	rehabilitation, and maintenance	7	C6	b1, c2
	renabilitation, and maintenance		C11	a1, a2
	Ontimization of the decign of rigid and		C4	a2
4	4 Optimization of the design of rigid and flexible pavements systems	7	C6	b1, c2
	Hexible paveillents systems		C11	a1, a2
	Empirical and mechanistic stochastic		C4	a2
5	Empirical and mechanistic stochastic structural subsystems	7	C6	b1, c2
			C11	a1, a2
	Utility theory, serviceability concept, cost			
	studies, traffic delay, environmental		C4	a2
6	deterioration,	7	C6	b1, c2
	rehabilitation and maintenance		C11	a1, a2
	optimization systems.			

Course Coordinator: Assoc. Prof. Dr. Alaa Gabr **Head of Department:** Prof. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

<u>Planning of Buildings Maintenance and Protection</u> (CIE529)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Planning of buildings maintenance and Protection
Course Code	CIE529
Year/Level	Level 5
Specialization	Major
Authorization Date of Course Specification	-
Pre-request	Complete 100 h

Tarabina bassa	Lectures	Tutorial	Practical	
Teaching hours	2	2	-	

2. Course Aims

No.	Aims					
4	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.					
7	Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.					
10	Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.					

3. Competencies:

	-	Compe	tencies	Learning Outcomes (LO'S)					
C2	2 Develop and conduct appro		appropriate						
expe	rimentation	and/or	simulation,	analyze and	b4 Evaluate components, systems, and				
inter	pret data, as:	sess, and	evaluate find	processes are evaluated for their					
statistical analyses and objective engineering				characteristics and performance.					
judg	ment to draw	<i>ı</i> conclusi	ons.						

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	c1 Apply safe systems at work by taking the necessary precautions to manage hazards.
C13 Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess environmental impacts of projects.	 b1 Address construction defects, instability, and quality issues c1 Assess environmental impacts of projects.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Review on of deterioration of building materials	4	4	-
2	Concept of life cycle cost- Protection methods against deterioration and corrosion of building materials	8	8	-
3	Types of defects and damages. Non-destructive tests	6	6	-
4	Partially destructive tests. Load tests. Materials for repair and selection. Methods and techniques of repair. Rehabilitation and retrofitting.	10	10	-
	Total	28	28	-

5. Teaching and learning methods:

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	del
Review on of deterioration of building materials	x	x			x	x	x							
Concept of life cycle cost- Protection	x	x			х	х	х							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

methods against deterioration and corrosion of building materials										
Types of defects and damages. Non-destructive tests	Х	Х		Х	х	х				
Partially destructive tests. Load tests. Materials for repair and selection. Methods and techniques of repair. Rehabilitation and retrofitting.	x	x		x	x	x				

6. Teaching and learning methods for disabled students:

	- Tourising and Tourising Meditous for distanced standards									
No.	Teaching Methods	Reason								
1	Presentation of the course in digital material	Better access any time								
2	Wed communication with students	Better communication with certain cases								
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students								
4	Electronic model system for the Institution.	E. learning								

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C13	b1, c1
2	Semester work (quizzes, sheets, report)	C13	b1, c1
3	Final term examination	C3, C13	a1, b1, c1

7.2 Evaluation Schedule:

		
No.	Evaluation Method	Weeks
1	semester work	7 th , 9 th
2	Mid Term examination	8^{th}
3	Final term examination	15 th

7.3 Weighting of Evaluation:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	Using and understanding engineering service and constructing john Clark 2018

9. Facilities required for teaching and learning:

Facility								
1	Lecture classroom	3	White board					
2	Seminar	4	Data show system					

10. Matrix of knowledge and skills of the course:

<u> 10.</u>	to. Wattix of knowledge and skins of the course.									
No	Торіс	Aims	Competencies	LO's						
1	Review on of deterioration of building materials	4	C13	a1, c1						
2	Concept of life cycle cost- Protection methods against deterioration and corrosion of building materials	3	C3, C13	b1, c1						
3	Types of defects and damages. Non-destructive tests	4	C13	a1, c1						
4	Partially destructive tests. Load tests. Materials for repair and selection. Methods and techniques of repair. Rehabilitation and retrofitting.	3	C3, C13	b1, c1						

Course Coordinator: Dr. Ayman Helal

Head of Department: Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

<u>Prefabricated Concrete Frames</u> (CIE530)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Prefabricated Concrete Frames
Course Code	CIE530
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre-request	Complete 100 h

Tarabina have	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims

No.	Aims
4	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.
7	Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.
10	Select appropriate and sustainable technologies for construction of buildings; using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as structural analysis and mechanics, properties, and strength of materials.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	a2 Define the principles, basic properties, and features of construction material, as well as their use in sustainable technologies for construction of buildings

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

- **C4** Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles
- **a1** Describe codes of practice, and standards, as well as health and safety regulations.
- C11 Select appropriate and sustainable technologies for construction of buildings, infrastructures and water structures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of: properties and strength of materials
- **a3** Define contemporary engineering technologies and their applications in relation to disciplines.
- **a1** Recognize the fundamentals of properties and strength of materials.
- **a2** Summarize, appropriate and sustainable technologies for construction of buildings.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Performance of prefabricated concrete	4	4	-
2	Design of concrete supported to shear stress	4	4	-
3	Design of columns	4	4	-
4	Design of roofs	4	4	-
5	Design of building frames	4	4	-
6	Design projects using the computer	4	4	-
7	Detailed reports	4	4	-
	Total	28	28	-

5. Teaching and learning methods:

5. leaching and le	arring i	пеш	Jus.											
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
Performance concrete	f	х			x	x	x	х						x

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Design of concrete supported to shear stress	х		х	х	х	х			х
Design of columns	х		х	х	х	х			х
Design of roofs	х		х	х	х	х			х
Design of building frames	х		х	х	х	х			х
Design projects using the computer	х		х	х	х	х			х
Detailed reports	х		х	х	Х	х			Х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason				
1	Presentation of the course in digital material	Better access any time				
2	Wed communication with students	Better communication with certain cases				
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	i knowledge and skills transfer among i				
4	Electronic model system for the Institution.	E. learning				

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
		C2	a2
1	Midterm examination	C4	a3
		C11	a1
2	Competer work (quizzos choots report)	C4	a1
	Semester work (quizzes, sheets, report)	C11	a2
2	Cinal tames are universities.	C4	a1, a3
3	Final term examination	C11	a2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Midterm examination	8th
2	Semester work	7th - 9th
3	Final term examination	15 th

7.3 Weighting of Evaluation:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Evaluation Method	Weights			
1	Midterm examination	20%			
2	Semester work	20%			
3	Final term examination				
	Total 100%				

8. List of References:

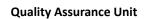
No.	Reference List
1	Essential books (textbooks / design codes): Egyptian Code for Design and Construction of Reinforced Concrete Structures 2032018. Design Aids and Examples in Accordance with the Egyptian Code for Design and Construction of Reinforced Concrete Structures 203-2018.
2	Recommended books: MacGregor J., "Reinforced Concrete: Mechanics and Design," Printice Hall, New Jersey, 2018.

9. Facilities required for teaching and learning:

Facility							
1	Lecture classroom	3	White board				
2	Seminar	4	Data show system				

10. Matrix of knowledge and skills of the course:

No	Topic	Aims	Competencies	LO's
1	Performance of prefabricated concrete	4,7,1 0	C4	a3, a1
2	Design of concrete supported to shear stress	4,7,1 0	C4 C11	a3 a1, a2
3	Design of columns	4,7,1 0	C11	a1, a2
4	Design of roofs	4,7,1 0	C4 C11	a3 a1, a2
5	Design of building frames	4,7,1 0	C4 C11	a3 a1, a2
6	Design projects using the computer	4,7,1 0	C11	a1, a2
7	Detailed reports	4,7,1 0	C11	a1, a2


Course Coordinator: Dr. Nesreen Elawadly **Head of Department:** Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Project Decision Analysis (CIE531)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Project Decision Analysis
Course Code	CIE531
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Prerequisite	Complete 100 CH

Tanahina Haum	Lectures	Tutorial	Practical	
Teaching Hours	2	2	-	

2. Course Aims:

No.	Aims
1	Master a broad range of engineering knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve engineering problems of varying complexity and variation.
3	Recognize his role in promoting engineering and contributing to the profession's and community's development; by appreciating the physical and natural environment's importance and working to promote sustainability concepts.

3. Competencies:

5. Competencies.						
Competencies	Learning Outcomes (LOs)					
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	c1 Identify, formulate, and solve complex engineering problems by applying the concepts and the theories of mathematics. c2 Identify, formulate, and solve complex engineering problems by applying the concepts and the theories of sciences, appropriate to the discipline. c3 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals.					
C2 Develop and conduct appropriate experimentation and/or	b3 Analyze and interpret data.					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

simulation, analyze and interpret **b4** Evaluate components, systems, and processes are data, assess, and evaluate findings, evaluated for their characteristics and performance. and use statistical analyses and c1 Choose relevant mathematical and computer-based objective engineering judgment to problem modeling and analysis methodologies. conclude. **c3** Applying statistical analyses and objective engineering judgment to conclude. C3 Apply engineering design processes to produce cost-effective **a2** Understand engineering solutions' professional solutions that meet specified needs ethics and impacts on society and the environment. with consideration for global, cultural. social. economic. **b1** Judge engineering decisions considering balanced environmental, ethical, and other costs. benefits, safety, quality, reliability, aspects as appropriate to the environmental impact. discipline, and within the principles and contexts of sustainable design and development. C4 Utilize contemporary technologies, codes of practice and a2 List the engineering-related business and standards, quality guidelines, health management principles. requirements. c2 Use fundamental organizational and project and safetv environmental issues, and risk management abilities. management principles.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Quantitative Methods of Decision-Making	6	6	-
2	Important Mathematical Models Useful in Decision Processes	6	6	-
3	Model-Structure Assumptions, Limitations, and Methods for Use	8	8	-
4	Concepts and Models of Support Systems for Management Decision Problems	8	8	-
	Total	28	28	-

5. Teaching and Learning Methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Topics	Fa ce- To -Fa ce Le ct ur e	On lin e Le ct ur e	Fli pp ed Cl as sr oo m	Pr es en tat io n an d M ov ies	Di sc us sio n	Pr ob le m- So lvi ng	Br ai n St or mi ng	Pr oj ec ts	Sit e Vis its	Sel f-L ea rni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
1	Quantitative Methods of Decision-Making	√			√										
2	Important Mathematical Models Useful in Decision Processes		√			\checkmark									
3	Model-Structure Assumptions, Limitations, and Methods for Use	V												1	
4	Concepts and Models of Support Systems for Management Decision Problems	V												~	

6. Teaching and Learning Methods for Disabled Students:

	8	
No.	Teaching Method	Reason
1	Presentation of The Course in Digital Material	Better Access at Any Time
2	Wed Communication with Students	Better Communication with Certain Cases
3	Asking Small Groups to Do Assignments; Each Composed of Low, Medium, and High-Performance Students	Knowledge and Skills Transfer Among Different Levels of Students
4	An Electronic Model System for The Institution	E. Learning

7. Student Evaluation:

7.1 Student Evaluation Method:

No. Evaluation Method		Competencies	LOs	
1	Semester Works (Quizzes, Sheets, Reports)	C1	c1, c2, c3	

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

		C2	b3, b4, c1, c3
		C3	a2, b1
		C4	a2, c2
2	Mid-Term Exam	C1	c1, c2, c3
		C1	c1, c2, c3
3 Final-Term Exam	Final Torm From	C2	b3, b4, c1, c3
	Final-Term Exam	C3	a2, b1
		C4	a2, c2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester Works (Quizzes, Sheets, Reports)	4 th , 11 th
2	Mid-Term Exam	8 th
3	Final-Term Exam	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Semester Works (Quizzes, Sheets, Reports)	20%
2	Mid-Term Exam	20%
3 Final-Term Exam		60%
	Total	100%

8. List of References:

No.	Reference List			
1	Wiley-Blackwell. Code of Practice for Project Management for Construction and			
	Development. Chartered Institute of Building (Great Britain).			
2	Kerzner, Harold. Project Management Workbook. A System Approach to Planning,			
	Scheduling, and Control.			
3	de Marco, A. Project Management for Facility Constructions A Guide for Engineers, and			
3	Architects.			
4	Project Management Institute and Project Management Institute. A Guide to the Project			
4	Management Body of Knowledge (PMBOK Guide).			
_	Lester, Albert. Project Management, Planning, and Control. Managing Engineering,			
Construction, and Manufacturing Projects to PMI, APM, and BSI Standards.				
6	Vanhoucke, M. Management for Professionals Integrated Project Management and Control.			

9. Facilities Required for Teaching and Learning:

	Facility				
1	Lecture Classroom	3	White Board		
2	Seminar	4	Data Show System		

10. Matrix of Knowledge and Skills:

	No.	Topic	Aims	Competencies	LOs
--	-----	-------	------	--------------	-----

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Quantitative Methods of Decision-Making	1, 3	C1	c1, c2, c3
2	Important Mathematical Models Useful in Decision Processes	1, 3	C1	c1, c2, c3
3	Model-Structure Assumptions, Limitations, and Methods for Use	1, 3	C2 C3 C4	b3, b4, c1, c3 a2, b1 a2, c2
4	Concepts and Models of Support Systems for Management Decision Problems	1, 3	C2 C3 C4	b3, b4, c1, c3 a2, b1 a2, c2

Course Coordinator: Prof. Dr. Mohamed Elkiki Head of Department: Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

<u>Project Financial Management</u> (CIE532)

1. Basic Information:

Program Title	Civil Engineering Program	
Department Offering the Program	Civil Engineering Department	
Department Responsible for the Course	Civil Engineering Department	
Course Title	Project Financial Management	
Course Code	CIE532	
Year/Level	Level 5	
Specialization	Minor – Elective Course	
Authorization Date of Course Specification	-	
Prerequisite	Complete 100 CH	

Tooching House	Lectures	Tutorial	Practical
Teaching Hours	2	2	-

2. Course Aims:

No.	Aims
6	Analyze data from the intended tests to manage resources creatively.
8	Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.

3. Competencies:

Competencies	Learning Outcomes (LOs)
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline, and within the principles and contexts of sustainable design and development.	 b1 Judge engineering decisions considering balanced costs, benefits, safety, quality, reliability, and environmental impact. c1 Incorporate economic, societal, global, environmental, and risk management factors into design.
C9 Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	d2 Effectively manage tasks, time, and resources.
C13 Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in	a1 Define the plan and manage the construction process.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

construction	and	materials;	and	assess	the
environmenta	al impa	acts of proje	cts.		

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Cash Flow and Its Analysis	4	4	-
2	Project Budget and Financial Methods	6	6	-
3	Risk and Cost Control	4	4	-
4	Financial Path for Project	4	2	-
5	Time Value	4	2	-
6	Profit Rate and Inflation Effects	6	6	-
	Total	28	28	-

5. Teaching and Learning Methods:

No.	Topics	Fa ce- To -Fa ce Le ct ur e	On lin e Le ct ur e	Fli pp ed Cl as sr oo m	Pr es en tat io n an d M ov ies	Di sc us sio n	Pr ob le m- So lvi ng	Br ai n St or mi ng	Pr oj ec ts	Sit e Vis its	Sel f-L ea rni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
1	Cash Flow and Its Analysis	V			V										
2	Project Budget and Financial Methods		\checkmark			√									
3	Risk and Cost Control		√			\checkmark									
4	Financial Path for Project	√				$\sqrt{}$									
5	Time Value														
6	Profit Rate and Inflation Effects		√			\checkmark									

6. Teaching and Learning Methods for Disabled Students:

No.	Teaching Method	Reason
1	Presentation of The Course in Digital Material	Better Access at Any Time

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Wed Communication with Students	Better Communication with Certain Cases
3	Asking Small Groups to Do Assignments; Each Composed of Low, Medium, and High-Performance Students	Knowledge and Skills Transfer Among Different Levels of Students
4	An Electronic Model System for The Institution	E. Learning

7. Student Evaluation:

7.1 Student Evaluation Method:

No.	Evaluation Method	Competencies	LOs
		C3	b1, c1
1	Semester Works (Quizzes, Sheets, Reports)	C 9	d2
		C13	a1
		C3	b1, c1
2	Mid-Term Exam	C 9	d2
		C13	a1
		C3	b1, c1
3	Final-Term Exam	C 9	d2
		C13	a1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester Works (Quizzes, Sheets, Reports)	4 th , 11 th
2	Mid-Term Exam	8 th
3	Final-Term Exam	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Semester Works (Quizzes, Sheets, Reports)	20%
2	Mid-Term Exam	20%
3	Final-Term Exam	60%
	Total	100%

8. List of References:

No.	Reference List					
1	Wiley-Blackwell. Code of Practice for Project Management for Construction and					
	Development. Chartered Institute of Building (Great Britain).					
	Kerzner, Harold. Project Management Workbook. A System Approach to Planning,					
2	Scheduling, and Control.					
2	de Marco, A. Project Management for Facility Constructions A Guide for Engineers, and					
3	Architects.					
_	Project Management Institute and Project Management Institute. A Guide to the Project					
4	Management Body of Knowledge (PMBOK Guide).					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Lester, Albert. Project Management, Planning, and Control. Managing Engineering, Construction, and Manufacturing Projects to PMI, APM, and BSI Standards.

Vanhoucke, M. Management for Professionals Integrated Project Management and Control.

9. Facilities Required for Teaching and Learning:

	Facility				
1	Lecture Classroom	3	White Board		
2	Seminar	4	Data Show System		

10. Matrix of Knowledge and Skills:

No.	Topic	Aims	Competencies	LOs
1	Cash Flow and Its Analysis	6, 8	C3 C9 C13	b1, c1 d2 a1
2	Project Budget and Financial Methods	6, 8	C3	b1, c1
3	Risk and Cost Control	6, 8	C3	b1, c1
4	Financial Path for Project	6, 8	C3 C9 C13	b1, c1 d2 a1
5	Time Value	6, 8	C3 C9 C13	b1, c1 d2 a1
6	Profit Rate and Inflation Effects	6, 8	C3 C9 C13	b1, c1 d2 a1

Course Coordinator: Prof. Dr. Mohamed Elkiki Head of Department: Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Project Management (2) (CIE533)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Project Management (2)
Course Code	CIE533
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Prerequisite	Complete 100 CH

Tanahina Hawa	Lectures	Tutorial	Practical	
Teaching Hours	2	2	-	

2. Course Aims:

No.	Aims					
	Work in and manage a diverse team of professionals from various engineering disciplines,					
2	taking responsibility for own and team performance, behaving professionally, and adhering					
	to engineering ethics and standards.					
	Communicate effectively with various audiences using various forms, methods, and					
5	languages; cope with academic and professional issues critically and creatively; and display					
	leadership, business administration, and entrepreneurial abilities.					
6	Analyze data from the intended tests to manage resources creatively.					
	Plan and manage construction processes; address construction defects, instability, and					
8	quality issues; maintain safety measures in construction and materials; and assess the					
	environmental impacts of projects.					
	Deal with biddings, contracts, and financial issues including project insurance and					
9	guarantees.					

3. Competencies:

Competencies	Learning Outcomes (LOs)
Competencies	

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline, and within the principles and contexts of sustainable design and development.	 b1 Judge engineering decisions considering balanced costs, benefits, safety, quality, reliability, and environmental impact. c1 Incorporate economic, societal, global, environmental, and risk management factors into design. c2 Applying engineering design procedures to generate cost-effective solutions while adhering to sustainable design and development principles and contexts.
C7 Function efficiently as an individual and as a member of multi-disciplinary and multicultural teams.	 d1 Collaborate effectively within a multidisciplinary team. d2 Work in stressful environments and within constraints. d3 Motivate individuals.
C9 Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	d2 Effectively manage tasks, time, and resources.
C13 Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.	a1 Define the plan and manage the construction process.
C14 Deal with biddings, contracts, and financial issues including project insurance and guarantees.	 a1 Define biddings, contracts, and financial issues. b1 Address biddings, contracts, and financial issues including project insurance and guarantees. c1 Apply biddings, contracts, and financial issues on civil engineering projects.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Evaluation and Performance Development for Construction Projects	2	2	-
2	Productivity in Construction Works	8	8	-
3	The Efficient Utilization of Project Resources	4	4	-
4	Construction Economies	8	8	-

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

5	Tender's Strategies	4	4	-
6	Different Field Application	2	2	-
	Total	28	28	-

5. Teaching and Learning Methods:

No.	Topics	Fa ce -T o- Fa ce Le ct ur e	O nli ne Le ct ur e	Fli p pe d Cl as sr o o m	Pr es en ta ti o n an d M ov ie s	Di sc us si o n	Pr o bl e m -S ol vi ng	Br ai n St or mi ng	Pr oj ec ts	Si te Vi sit s	Se If- Le ar ni ng an d Re se ar ch	C o pe ra ti ve	Di sc ov er in g	M od eli ng	L a b
1	Evaluation and Performance Development for Construction Projects		√			√									
2	Productivity in Construction Works	\checkmark					$\sqrt{}$								
3	The Efficient Utilization of Project Resources	$\sqrt{}$			V										
4	Construction Economies	\checkmark				√									
5	Tender's Strategies				$\sqrt{}$										
6	Different Field Application		√						V						

6. Teaching and Learning Methods for Disabled Students:

No.	Teaching Method	Reason
1	Presentation of The Course in Digital Material	Better Access at Any Time
2	Wed Communication with Students	Better Communication with Certain Cases
3	Asking Small Groups to Do Assignments; Each Composed of Low, Medium, and High-Performance Students	Knowledge and Skills Transfer Among Different Levels of Students
4	An Electronic Model System for The Institution	E. Learning

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7. Student Evaluation:

7.1 Student Evaluation Method:

No.	Evaluation Method	Competencies	LOs
		C3	b1, c1, c2
		C7	d1, d2, d3
1	Semester Works (Quizzes, Sheets, Reports)	C9	d2
		C13	a1
		C14	a1, b1, c1
		C7	d1, d2, d3
2	Mid-Term Exam	C9	d2
		C13	a1
		C3	b1, c1, c2
	Final-Term Exam	C7	d1, d2, d3
3		C9	d2
		C13	a1
		C14	a1, b1, c1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester Works (Quizzes, Sheets, Reports)	4 th , 11 th
2	Mid-Term Exam	8 th
3	Final-Term Exam	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Semester Works (Quizzes, Sheets, Reports)	20%
2	Mid-Term Exam	20%
3	Final-Term Exam	60%
	Total	100%

8. List of References:

No.	Reference List					
1	Wiley-Blackwell. Code of Practice for Project Management for Construction and					
	Development. Chartered Institute of Building (Great Britain).					
2	Kerzner, Harold. Project Management Workbook. A System Approach to Planning,					
	Scheduling, and Control.					
,	de Marco, A. Project Management for Facility Constructions A Guide for Engineers, and					
3	Architects.					
	Project Management Institute and Project Management Institute. A Guide to the Project					
4	Management Body of Knowledge (PMBOK Guide).					
-	Lester, Albert. Project Management, Planning, and Control. Managing Engineering,					
5	Construction, and Manufacturing Projects to PMI, APM, and BSI Standards.					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

6 Vanhoucke, M. Management for Professionals Integrated Project Management and Control.

9. Facilities Required for Teaching and Learning:

Facility							
1	Lecture Classroom	3	White Board				
2	Seminar	4	Data Show System				

10. Matrix of Knowledge and Skills:

No.	Topic	Aims	Competencies	LOs	
1	Evaluation and Performance Development for Construction Projects	6, 8	C9 C13	d2 a1	
2	Productivity in Construction Works	2, 5, 6, 8	C7 C9 C13	d1, d2, d3 d2 a1	
3	The Efficient Utilization of Project Resources	6, 8	C9 C13	d2 a1	
4	Construction Economies	6, 8	C3	b1, c1, c2	
5	Tender's Strategies	9	C14	a1, b1, c1	
6	Different Field Application	2, 5, 6, 8	C3 C7 C9 C13	b1, c1, c2 d1, d2, d3 d2 a1	

Course Coordinator: Dr. Hamdy Abd Elaty Head of Department: Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Project Visibility Study (CIE534)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Project Visibility Study
Course Code	CIE534
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Prerequisite	Complete 100 CH

Tooching House	Lectures	Tutorial	Practical
Teaching Hours	2	2	-

2. Course Aims:

No.	Aims
6	Analyze data from the intended tests to manage resources creatively.
8	Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess the environmental impacts of projects.

3. Competencies:

5. Competencies.							
Competencies	Learning Outcomes (LOs)						
C3 Apply engineering design	a2 Understand engineering solutions' professional						
processes to produce cost-effective	ethics and impacts on society and the environment.						
solutions that meet specified needs	b1 Judge engineering decisions considering balanced						
with consideration for global, cultural, social, economic, environmental,	costs, benefits, safety, quality, reliability, and						
ethical, and other aspects as	environmental impact.						
appropriate to the discipline, and	c2 Applying engineering design procedures to generate						
within the principles and contexts of	cost-effective solutions while adhering to sustainable						
sustainable design and	design and development principles and contexts.						
development.							
C4 Utilize contemporary	a2 List the engineering-related business and						
technologies, codes of practice and	management principles.						
standards, quality guidelines, health	c2) Use fundamental organizational and project						
and safety requirements,	management abilities.						

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

environmental	issues.	and	risk
	,		
management pr	incipies.		

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Importance, Definition, and Historical Development for Visibility Study	2	2	-
2	Project Essence and Its Principles and Forms	4	4	-
3	Initial Visibility Studies and Its Elements	2	2	-
4	Environmental Visibility Study	2	2	-
5	Important Financial, Monetary, and Marketing Sides in Visibility Study	4	4	-
6	Exhibition of Products and Effective Parameters in It	2	2	=
7	Pricing Policies	2	2	=
8	The Situation of Government, Consumer, and Competitive Projects	2	2	-
9	Engineering and Technical Visibility for The Project	4	4	-
10	Social Visibility Study	2	2	-
11	Evaluation Methods of Visibility Study	2	2	-
	Total	28	28	-

5. Teaching and Learning Methods:

No.	Topics	Fa ce- To -Fa ce Le ct ur e	On lin e Le ct ur e	Fli pp ed Cl as sr oo m	Pr es en tat io n an d M ov ies	Di sc us sio n	Pr ob le m- So lvi ng	Br ai n St or mi ng	Pr oj ec ts	Sit e Vis its	Sel f-L ea rni ng an d Re se ar ch	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b
1	Importance, Definition, and Historical Development for Visibility Study		√		√										
2	Project Essence and Its Principles and Forms	V				√									

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3	Initial Visibility Studies and Its Elements	√			V					
4	Environmental Visibility Study		√	√						
5	Important Financial, Monetary, and Marketing Sides in Visibility Study	V				V				
6	Exhibition of Products and Effective Parameters in It		V	V						
7	Pricing Policies									
8	The Situation of Government, Consumer, and Competitive Projects		V	V						
9	Engineering and Technical Visibility for The Project	√			V					
10	Social Visibility Study		V	V						
11	Evaluation Methods of Visibility Study	√					V			

6. Teaching and Learning Methods for Disabled Students:

No.	Teaching Method	Reason					
1	Presentation of The Course in Digital Material	Better Access at Any Time					
2	Wed Communication with Students	Better Communication with Certain Cases					
3	Asking Small Groups to Do Assignments; Each Composed of Low, Medium, and High-Performance Students	Knowledge and Skills Transfer Among Different Levels of Students					
4	An Electronic Model System for The Institution	E. Learning					

7. Student Evaluation:

7.1 Student Evaluation Method:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Evaluation Method	Competencies	LOs
1	Semester Works (Quizzes, Sheets, Reports)	C3	a2, b1, c2
	Serilester Works (Quizzes, Sileets, Reports)	C4	a2, c2
,	Mid-Term Exam	C3	a2, b1, c2
	Wild-Territ Exam	C4	a2, c2
	Final Tayns Franc	C3	a2, b1, c2
3	Final-Term Exam	C4	a2, c2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Semester Works (Quizzes, Sheets, Reports)	4 th , 11 th
2	Mid-Term Exam	8 th
3	Final-Term Exam	15 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights	
1	Semester Works (Quizzes, Sheets, Reports)	20%	
2	Mid-Term Exam	20%	
3	Final-Term Exam	60%	
	Total	100%	

8. List of References:

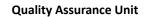
No.	Reference List				
1	Wiley-Blackwell. Code of Practice for Project Management for Construction and				
	Development. Chartered Institute of Building (Great Britain).				
2	Kerzner, Harold. Project Management Workbook. A System Approach to Planning,				
	Scheduling, and Control.				
3	de Marco, A. Project Management for Facility Constructions A Guide for Engineers, and				
	Architects.				
4	Project Management Institute and Project Management Institute. A Guide to the Project				
4	Management Body of Knowledge (PMBOK Guide).				
5	Lester, Albert. Project Management, Planning, and Control. Managing Engineering,				
	Construction, and Manufacturing Projects to PMI, APM, and BSI Standards.				
6	Vanhoucke, M. Management for Professionals Integrated Project Management and Control.				

9. Facilities Required for Teaching and Learning:

Facility				
1	Lecture Classroom	3	White Board	
2	Seminar	4	Data Show System	

10. Matrix of Knowledge and Skills:

No.	Tor	pic A	Aims	Comp	etencies	LOs



Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	1			
1	Importance, Definition, and Historical Development for Visibility Study	6, 8	C3 C4	a2, b1, c2 a2, c2
2			C3	a2, b1, c2
			C4	a2, c2
3	Initial Visibility Studies and Its Elements		C3	a2, b1, c2
3			C4	a2, c2
4	Environmental Visibility Study	6, 8	C3	a2, b1, c2
	Important Financial, Monetary, and Marketing	<i>-</i>	62	-2 -4 -2
5	Sides in Visibility Study	6, 8	C3	a2, b1, c2
	Exhibition of Products and Effective Parameters in	6.0	C3	a2, b1, c2
6	It	6, 8	C4	a2, c2
7	Pricing Policies		C3	a2, b1, c2
	The Situation of Government, Consumer, and		C3	a2, b1, c2
8	Competitive Projects	6, 8	C4	a2, c2
	Engineering and Technical Visibility for The	6.0	C3	a2, b1, c2
9	Project	6, 8	C4	a2, c2
10	Social Visibility Study		C3	a2, b1, c2
44		6, 8	C3	a2, b1, c2
11	Evaluation Methods of Visibility Study		C4	a2, c2

Course Coordinator: Prof. Dr. Mohamed Elkiki **Head of Department:** Prof. Dr. Mohamed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

River Engineering (CIE535)

1. Basic Information

1. Dasic information	
Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	River Engineering
Course Code	CIE535
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre-request	Complete 100 h

Teaching hours	Lectures	Tutorial	Practical	
	2	4	-	

2. Course Aims:

No.	Aims
4	Use the techniques, skills, and current engineering tools required for river engineering
4	problems regarding the classifications of rivers, velocity, and flow rate measurements.
	Achieve an optimum design for hydraulics structures on rivers such as dams, spillways,
7	gates, and pumping stations.
10	Select appropriate and sustainable technologies for river velocity, flow rate measurements, and
10	sediment control

3. Competencies:

Competencies	Learning outcomes (LO'S)	
C1 Identify, formulate, and solve complex river engineering problems by applying	i at i jescrine the relevant mathematical	

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

engineering fundamentals, basic science, and mathematics.	principles and theories in the discipline concepts regarding velocity, and flow rate measurements, and sediment control. a3 Explain the principal types of river hydraulic structures as dams, spillways, and gates.		
C11 Select appropriate and sustainable technologies for river velocity, sedimentation, and flow rate measurements.	 a1 Recognize the fundamentals of technologies for river velocity, sedimentation control, and flow rate measurements. a2 Summarize, appropriate and sustainable technologies for dam and spillway construction. c1 Using numerical techniques for rivers, 		
C12 Achieve an optimum design of dams, gates, and spillway construction.	 velocity, and flow rate measurements. b1 Achieve an optimum design of dams, and spillway structures. b2 Achieve an optimum design of hydraulic structures gates. 		

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Classifications of rivers, data collection method; velocity and flow rate measurements.	6	6	1
2	Design of hydraulic structures: dike, spillway, dam	14	14	ı
3	Countermeasure on sediment control; corrosion deposition scour	8	8	-
	Total	28	28	-

5. Teaching and Learning Methods:

<u>J.</u>	reactiffing affur Leaf														
	Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Classifications of rivers, data collection method; velocity and flow rate measurements.	x	x		х	х	х				
Design of hydraulic structures: dike, spillway, dam	х	х		х	x	х				
Countermeasure on sediment control; corrosion deposition scour	х	х		Х	Х	Х				

6. Teaching and Learning Methods of disabled Students:

No	Teaching Method
1	Additional Tutorials
2	Online lectures and assignments

7. Student assessment:

7.1 Student Assessment Methods:

No	Assessment Method	Competencies	LOs
		C1,	a1, a3
1	Mid Term Examination (written/ online)	C11,	a1, a2, c1
		C12	b1
		C1,	a1, a3
2	Formative (quizzes- online quizzes- presentation)	C11,	a1, a2, c1
		C12	b1
		C1,	a1, a3
3	Final Term Examination (written)	C11,	a1, a2, c1
		C12	b1, b2

7.2 Assessment Schedule:

No	Assessment Method	Weeks
1	Mid Term Examination (written/ online)	8th
2	Practical/ Oral Examination	15th
3	Formative (quizzes- online quizzes presentation-Tutorial and report assessment)	Every week

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4	Final Term Examination (written)	Decided by Faculty Council
---	----------------------------------	----------------------------

7.3 Weighting of Assessments:

No	Assessment Method	Weights
1	Mid Term Examination (written/ online)	20%
2	Formative (quizzes- online quizzes presentation-Tutorial and report assessment)	20%
3	Final Term Examination (written)	60%
	Total	100%

8. List of References:

No	References
1	EBEED, G.s. "Lecture Notes on Design of irrigation Structures" Ain shams University, faculty of Engineering, 2020.
2	ASWA G.L., "irrigation and water Resources Engineering", New international (p) limited, publishers, Ansari Road Daryagauj, New Delhi,2018.

9. Facilities Required for Teaching and Learning:

	7. Tuennies Redaired for readining and Learning.									
No	Facility									
1	Lecture Classroom	3	White Board							
2	Lab Facilities	4	Data Show System							
5	Presenter									

10. Matrix of Knowledge and Skills of the Course

No.	Торіс	Aims	Competencies	LO's
1	Classifications of rivers, data collection	1	C1	a1
1	method; velocity and flow rate measurements.	4	C11	a1, a2, c1
	Design of hydroulic atrustures: dike, enillysy		C1,	a3
2	Design of hydraulic structures: dike, spillway, dam, gate, pumping stations, sheet pile.	7	C11,	a1, a2
	dam, gate, pumping stations, sheet pile.		C12	b1
2	Countermeasure on sediment control;	4 10	C1	a1
3	corrosion deposition scour, bill of quantity	4, 10	C11	a1

Course Coordinator Assoc. Prof. Dr. Mohammed Gabr **Head of Department:** Prof. Dr. Mohammed Elkiki

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Traffic Control Systems (CIE538)

1. Basic Information:

Program Title	Civil Engineering Program		
Department Offering the Program	Civil Engineering Department		
Department Responsible for the Course	Civil Engineering Department		
Course Title	Traffic Control Systems		
Course Code	CIE538		
Year/Level	Level 5		
Specialization	Minor – Elective Course		
Authorization Date of Course Specification	-		
Pre- request	Complete 100 h		

Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims

	41007.11110
No.	Aims
4	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.
7	Achieve an optimum design of traffic control systems strategies for intersections and arterials or any other emerging field relevant to the discipline.

3. Competencies:

Competencies	Learning Outcomes (LO'S)				
C1. Identify, formulate, and solve complex	a2 Explain the scientific principles and				
engineering problems by applying engineering	theories that apply to the topic.				
fundamentals, basic science, and	b3 Applying engineering basics that are				
mathematics.	relevant to the subject.				
C2 Develop and conduct appropriate	b2 Conduct basic experiments to learn about the				
experimentation and/or simulation, analyze	applications of traffic control strategies and				
and interpret data, assess, and evaluate	concepts.				
findings, and use statistical analyses and	b4 Evaluate components, systems, and processes				
objective engineering judgment to draw	are evaluated for their characteristics and				
conclusions.	performance.				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	c1 Choose relevant mathematical and computer-based methodologies for problem modelling and analysis.
C11 Select appropriate and sustainable	a2 Summarize, appropriate and sustainable
technologies for traffic networks control	technologies for evaluating effectiveness of traffic
systems	control systems .

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Introduction to existing and new traffic control systems strategies including both off-line signal optimization techniques and real-time computer traffic-responsive control concepts	8	8	Þ
2	Control concepts and methods for signal intersections, arterial systems, and area traffic networks.	10	10	-
3	Traffic control system evaluation techniques using measures of effectiveness (M.O.E) for signal intersections, arterial, and networks.	10	10	_
	Total	28	28	-

5. Teaching and learning methods:

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Introduction to existing and new traffic control systems strategies including both off-line signal optimization techniques and real-time computer	х	х			х	х	х							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

traffic-responsive control concepts										
Control concepts and methods for signal intersections, arterial systems and area traffic networks.	x	x		x	x	x				
Traffic control system evaluation techniques using measures of effectiveness (M.O.E) for signal intersections, arterial, and networks.	x	x		x	x	x				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different level of students.

7. Student Evaluation:

7.1 Student Evaluation method:

No	Evaluation Method	Competencies	LO's
1	Mid-term examination	C1 C2	a2, b3 b2, b4, c1
		C11	a2
		C1	a2, b3
2	Semester work	C2	b2, b4, c1
		C11	a2
		C1	a2, b3
3	Final term examination	C2	b2, b4, c1
		C11	a2

7.2 Evaluation Schedule:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No.	Evaluation Method	Weeks
1	Semester work	2nd, 7th, 9th
2	Mid Term examination	8th
3	Final term examination	15 <i>t</i> h

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

8. List of References:

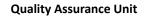
No.	Reference List
	Essential books (textbooks):
1	Transportation Engineering, an Introduction, C. Jotin Khisty, Prentice Hall, Englewood Cliffs,
	New Jersey, 1990.
	Traffic Engineering, William R. McShane, Prentice Hall, Englewood Cliffs, New Jersey, 1990.
	Recommended books:
2	Ott, Introduction to Statistical Methods and Data Analysis, PWS-Kent, 1990.
	Control of traffic systems in buildings, 2006 sandro marken

9. Facilities required for teaching and learning:

	Facility								
1	Lecture classroom	3	White board						
2	Seminar	4	Data show system						

10. Matrix of knowledge and skills of the course:

No.	Торіс	Aims	Competencies	LO's
1	Introduction to existing and new traffic control systems strategies including both offline signal optimization techniques and real-time computer traffic-responsive control concepts	4, 7	C1 C2 C11	a2, b3 b2, b4, c1 a2
2	Control concepts and methods for signal intersections, arterial systems, and area traffic networks.	4, 7	C1 C2 C11	a2, b3 b2, b4, c1 a2


Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

3	Traffic control system evaluation techniques using measures of effectiveness (M.O.E) for signal	4. 7	C1	a2, b3 b2, b4, c1
3	intersections, arterial, and networks.	4, /	C2 C11	a2

Course Coordinator: Assoc. Prof. Dr. Alaa Gabr **Head of Department:** Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Reinforced Concrete (4) (CIE539)

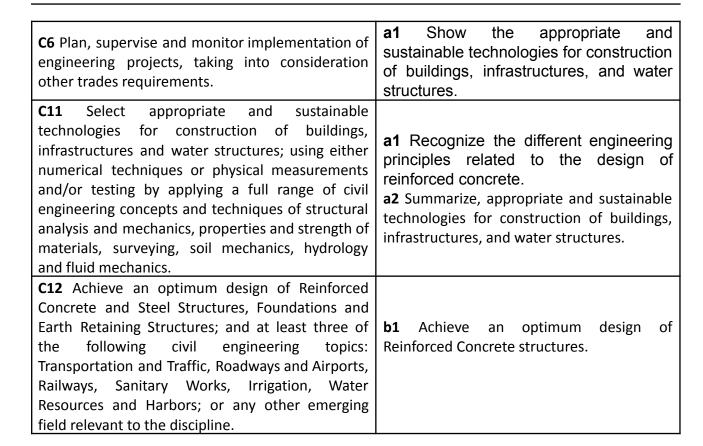
1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Reinforced Concrete (4)
Course Code	CIE539
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre-request	Complete 100 h

Teaching hours	Lectures	Tutorial	Practical
	2	2	-

2. Course Aims:

No.	Aims
4	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.
7	Achieve an optimum design of Reinforced.
10	Select appropriate and sustainable technologies for construction of buildings, infrastructures and water structures; using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.


3. Intended Learning Outcomes (LO'S):

Competencies	Learning Outcomes (LO'S)

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Introduction	2	2	-
2	Design of un-cracked sections	6	6	-
3	Design of rectangular tanks	6	6	-
4	Design of Circular tanks	6	6	-
5	Design of elevated tanks	8	8	-
	Total	28	28	-

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	lab
Introductio n		х						х						х
Design of un-cracked sections		x						х						х
Design of rectangular tanks		x						х						х
Design of Circular tanks		х						х						х
Design of elevated tanks		x						х						х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different level of students.

7. Student evaluation:

7.1 Student evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Mid Term Examination	C6	a1
1		C11	a1
2	Semester work	C11	a1, a2
		C6	a1
3	Final Term Examination	C11	a1, a2
		C12	b1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks	
1	Semester work	2 nd ,7 th , 9 th	
2	Mid Term examination	8^{th}	
3	Final term examination	15 th	

7.3 Weighting of Evaluation:

No.	Evaluation method	Weights	
1	Mid-term examination	20%	
2	Semester work	20%	
3	Final-term examination	60%	
	Total 100%		

8. List of References:

No.	Reference List
	Chmielewski, Ryszard, Leopold Kruszka, and Paweł Muzolf. "The selection of methods for
1	strengthening of the reinforced-concrete structure of the open tank." Case Studies in
	Construction Materials 12 (2020): e00343.
	Nallanathel, Mr Manoj, Mr B. Ramesh, and L. Jagadeesh. "Effective Utilization of Staad Pro
2	in The Design and Analysis of Water Tank." International Journal of Pure and Applied
	Mathematics 119.17 (2019)
3	Design of Reinforced Concrete Structures Design of reinforced concrete structures, Magdy
3	Abd EL-Hameed Tayel, 2019
4	Design of reinforced concrete Water Tanks, Khalil Ibrahim Waked, Scientific Book House for
4	Publishing& Distributing, 2018
5	Simple Examples of Reinforced Concrete Design, Oscar Faber, Edition 4, Oxford University
)	Press, 1952, 2018

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

10. Matrix of knowledge and skills of the course:

No.	Topic	Aims	Competencies	LO's
1	Introduction	7	C6	a1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Design of un-cracked sections	10	C11	a1, b1
			C12	a1
3	Design of rectangular tanks	10	C11	a1, b1
			C12	a1
4	Design of Circular tanks	10	C11	a1, b1
4			C12	a1
_	Design of swimming pools	10	C11	a1, b1
5			C12	a1

Course Coordinator: Prof. Dr. Khaled Fawzy **Head of Department:** Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

<u>Tunneling and Underground Excavation</u> (CIE540)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Tunneling and Underground Excavation
Course Code	CIE540
Year/Level	Level 5
Specialization	Major
Authorization Date of Course Specification	-
Pre- request	Complete 100 h

T	Lectures	Tutorial	Practical	
Teaching hours	2	2	-	

2. Course Aims

No.	Aims		
4	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.		
7	Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.		
10	Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.		

3. Competencies:

Competencies	Learning Outcomes (LO'S)			
C2 Develop and conduct appropriate simulation,	a2 Define the principles, basic properties, and			
analyze, and interpret data, assess, and evaluate	features of construction material, as well as			
findings, and use statistical analyses and objective	their use in sustainable technologies for			
engineering judgment to draw conclusions.	construction of buildings, infrastructures.			

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	1	
	c3 Applying statistical analyses and objective	
	engineering judgment to draw conclusions.	
C4		
C4 Utilize contemporary technologies, codes of		
practice and standards, quality guidelines, health	b1 Create methodical approaches when	
and safety requirements, environmental issues,	dealing with new and advancing technology.	
and risk management principles.		
C6 Plan, supervise and monitor implementation	a1 Show the appropriate and sustainable	
of engineering projects, taking into consideration	technologies for construction of buildings,	
other trades requirements	infrastructures, and water structures.	
C9 Utilize codes of practice	d1 Describe codes of practice.	
C12 Achieve an optimum design of Tunneling and	b1 Achieve an optimum design of Reinforced	
underground Excavation	Concrete	

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Introduction to tunnels	2	2	=
2	numerical methods in tunnel constructions	4	4	=
3	Computer software packages and its applications in tunnels.	4	4	=
4	Tunneling and excavations in hard rock	4	4	-
5	Basic rock mechanics, shape, size and orientation of an opening, elastic deformation and the Kirsch solution, rock mass classification, support design and ground reaction curve, drill and blast method, NATM tunneling method. Tunneling in soft ground		4	ı
6	problems of urban tunneling, deformation and surface settlement, load on liners, face stability, methods of soft ground tunneling including EPB and slurry shield methods		4	-
7	Selection of methods of attack for excavation of tunnels and deep vertical sided openings. Tunneling procedures based on behavioral characteristics of soil and rock, study of tunnel boring machines, shielded and drill-and-blast operations, linings, soil linear interaction. Deep excavation procedures related to support of excavation systems, methods of installation and dewatering.	6	6	-
	Total	28	28	-

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	Facetoface lecture	Online le cture	Flipped class room	Presentation and movies	D is c u ss io n	Problems oling	B ra in st o r m in g	P r oj e ct s	Si t e vi si ts	Sel-lear ningand Research	C o o p e ra ti v e	D is c o v e ri n g	M o d el in g	L a b
Introduction to tunnels	х	х			х	х	х							
numerical methods in tunnel constructions	х	х			х	Х	х							
Computer software packages and its applications in tunnels.	х	x			х	x	x							
Tunneling and excavations in hard rock	x	х			х	x	x							
Basic rock mechanics, shape, size and orientation of an opening, elastic deformation and the Kirsch solution, rock mass classification, support design and ground reaction curve, drill, and blast method, NATM tunneling method. Tunneling in soft ground	x	x			x	x	x							
problems of urban tunneling, deformation and surface settlement, load on liners, face stability, methods of soft ground tunneling including EPB and slurry shield methods	х	х			х	х	х							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Selection of methods of attack for excavation of tunnels and deep vertical sided openings. Tunneling procedures based or behavioral characteristics of soil and rock, study of tunnel boring machines, shielded and drill-and-blast operations linings, soil linear interaction. Deep excavation procedures related to support of excavation systems, methods of installation and dewatering.	x	x			x	x	x							
---	---	---	--	--	---	---	---	--	--	--	--	--	--	--

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
		C2	a2, c3
1	Mid-term examination	C4	b1
		C6	a1
		C2	a2, c3
2	 Semester work	C4	b1
	Semester work	C6	a1
		C9	d1
		C2	a2, c3
		C4	b1
3	Final term examination	C6	a1
		C 9	d1
		C12	b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	semester work	continuous evaluation

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Mid Term examination	8th
4	Final term examination	15 <i>th</i>

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	Design and construction of tunnels, pietrolanaridi, 2018
2	Tunneling and tunnel mechanio, Dimitrioskolymbas 2020
3	Course notes: Lecture notes prepared by the course coordinator +Solved examples.
4	Das, B., M. (2017), "Principles of Foundation Engineering ", CENGAGE Learning,
5	Gulhati, S.K. and Datta, M. (2015), "Geotechnical Engineering ", Tata McGraw-Hill, New Delhi.
_	Essential books (textbooks): Egyptian Code of Practice for Soil Mechanics and Foundations (2002)

9. Facilities required for teaching and learning:

No	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

10. Matrix of knowledge and skills of the course:

No	Topic	Aims	Competencies	LO's
1	late dusting to turn of	4710	C2	a2, c3
1	Introduction to tunnels	4,7,10	C4	b1
2	numerical methods in tunnel constructions	4,7,10	C2	a2, c3

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

			C9	d1
	Computer software nackages and its applications in		C2	a2, c3
3	Computer software packages and its applications in tunnels.	4,7,10	C9	d1
	turners.		C12	b1
,	Tunnaling and averyations in hard rock	4710	C2	a2, c3
4	Tunneling and excavations in hard rock	4,7,10	C9	d1
	Basic rock mechanics, shape, size and orientation of			
	an opening, elastic deformation and the Kirsch		C2	a2, c3
5	solution, rock mass classification, support design	4,7,10	C 9	d1
	and ground reaction curve, drill, and blast method,		C12	b1
	NATM tunneling method. Tunneling in soft ground.			
	load on liners, face stability, problems of urban		C2	a2, c3
6	tunneling, deformation and surface settlement	4,7,10	C9	d2, c3
	methods of soft ground tunneling including EPB and	7,7,10	C12	b1
	slurry shield methods		C12	V-
	Selection of methods of attack for excavation of			
	tunnels and deep vertical sided openings. Tunneling			
	procedures based on behavioral characteristics of		C2	a2, c3
7	soil and rock, study of tunnel boring machines,	4,7,10	C9	d2, c3
′	shielded and drill-and-blast operations, linings, soil	7,7,10	C12	b1
	linear interaction. Deep excavation procedures		012	
	related to support of excavation systems, methods			
	of installation.			

Course Coordinator: Dr. Hany Hashish

Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

<u>Urban Transportation Planning</u> (CIE541)

1. Basic Information

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Urban Transportation Planning
Course Code	CIE541
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre- request	Complete 100 h

Too shine have	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims:

No.	Aims
	Use the techniques, skills, and current engineering tools required for engineering practice
4	by taking full responsibility for one's own learning and development, participating in lifelong
	learning, and demonstrating the ability to pursue postgraduate and research studies.

3. Competencies:

5. Competencies:						
Competencies	Learning Outcomes (LO'S)					
C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate transportation systems,	 a2 Summarize, appropriate of sustainable technologies for urban planning. b2 Conduct basic experiments to learn about the applications of urban planning, transportation planning 					
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	c1 Incorporate economic, societal, global, environmental impact of urban planning techniques.					
C11 Select appropriate and sustainable	a2 Achieve an optimum design of works for urban					
technologies for urban planning design	planning, city streets, and environments.					

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C12 Achieve an optimum design for Transportation and Traffic, Roadways and	b1 Achieve the design of road. b2 Achieve an optimum design of works for transportation and traffic, roadways and airports, railways, sanitary works, irrigation, water resources and harbors; or any other emerging field relevant to the discipline.
maintain safety measures in urban planning	a1 define plan and mange urban planning process and transportation systems.c1 Assess environmental impacts of transportation projects.

4. Contents:

	. Contents.						
No.	Topics	Lectures	Tutorial	Practical			
1	Measures of flow, speed, and Density	2	2	-			
2	Statically of traffic characteristics (travel time, delay, speed, pedestrians, parking, and accident studies	2	2	-			
3	Traffic signals	2	2	-			
4	Parking garages and terminals design	2	2	-			
5	Freeway surveillance and control	2	2	-			
6	General characteristics of transportation: streets, highways, rail, transit, water, and pipelines. Egypt transport system: on overview	2	2	-			
7	Fundamentals of traffic flow: time space diagrams, capacity analysis	2	2	-			
8	control, IVHS, public issues and administration	4	4	-			
9	Transport system design: characteristics of driver, vehicle, and road. Route location , horizontal, an. Vertical alignment, earthwork, drainage, and pavements	2	2	-			
10	Economic evaluation, system operation, maintenance, and rehabilitation	4	4	-			
11	Environmental impacts, various laboratory experiments and design projects supplement the subject matter	4	4	<u>-</u>			
	Total	28	28	-			

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	Fa ce to fa ce le ct ur e	Onlinelecture	Fli pedclas sroom	Pr es e nt at io n a n d m o vi es	Di sc us si o n	Pr o bl e m so lvi n g	Br ai n st or m in g	Pr oj ec ts	Si te vi si ts	Selfer e ar in seand Research	C o o p er at iv e	Di sc o ve ri n g	M o d el in g	La b
Measures of flow, speed, and Density	x	x			х	х	х							
Statically of traffic characteristics (travel time, delay, speed, pedestrians, parking and accident studies	х	х			х	х	х							
Traffic signals	х	Х			Х	Х	х							
Parking garages and terminals design	х	х			х	х	х							
Freeway surveillance and control	х	х			х	х	х							
General characteristics of transportation: streets, highways, rail, transit, water, and pipelines. Egypt transport system: on overview	x	x			х	х	x							
Fundamentals of traffic flow: time space diagrams, capacity analysis	х	х			х	х	х							
control, IVHS, public issues and administration	х	х			х	х	х							
Transport system design: characteristics of driver,	х	х			х	х	х							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

vehicle, and road. Route location , horizontal, an. Vertical alignment, earthwork,										
drainage and pavements										
Economic evaluation, system operation, maintenance, and rehabilitation	х	х		х	х	х				
Environmental impacts, various laboratory experiments and design projects supplement the subject matter	×	×		×	×	×				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each. composed of low, medium, and high-performance students	Knowledge and skills transfer among different levels of students
4	Electronic model system for the Institution.	E. learning

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Midterm examination	C2	a2, b2
	Whater in examination	C12	b2
2	Semester work (quizzes, sheets, report)	C2	a2, c2
		C2	a2, b2, c2
3	Final term examination	C11	a1
		C12	b2

7.2 Evaluation Schedule:

No	Evaluation Method	Weeks
1	Midterm examination	8th

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Semester work	7th - 9th
3	Final term examination	15th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. 8-List of References:

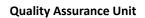
No	Reference List
1	Ott, Introduction to Statistical Methods and Data Analysis, PWS-Kent, 2019
2	Simulation of urban transport system, slim hammed and mekkiksouri, fib 2021
3	Urban dynamics and simulation models, densipumai, romainreuillon, 2020

9. Facilities required for teaching and learning:

No	Facility
1	Seminar
2	Lecture Classroom
3	White Board
4	Data Show system

10. Matrix of knowledge and skills of the course:

No.	Торіс	Aims	Competencies	LO's
1	Land use-transportation interaction	2, 8	C2	a2
2	The process of Urbana transportation planning, urban transport problems, goals, and objectives, data and information, Survey design, travel demand for casting: 1) trip generations, 2) trip distribution, 3) modal choice, 4) route assignment.	2, 8	C2, C13	a2, c2 a1
3	The evaluation of urban transport system,	2,8	C2 C12	a2, b2 b2
4	transport system management	2, 8	C2 C12	a2 b2
5	demand management, and control	2, 8	C2 C12 C13	a2, c2 b2, c1



Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Course Coordinator: Assoc. Prof. Dr. Alaa Gabr **Head of Department:** Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Special Concrete Structures (1) (CIE542)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Special Concrete Structures (1)
Course Code	CIE542
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre- request	Complete 100 h

Too shine have	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims

No.	Aims
4	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.
7	Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.
10	Select appropriate and sustainable technologies for construction of buildings. using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as structural analysis and mechanics, properties and strength of materials, surveying.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C2 Develop and conduct appropriate	a2 Define the principles, basic properties, and features
simulation, analyze, and interpret data,	of construction material, as well as their use in
assess and evaluate findings, and use	sustainable technologies for construction of buildings,
statistical analyses and objective	infrastructures.
engineering judgment to draw	c3 Applying statistical analyses and objective
conclusions.	engineering judgment to draw conclusions.

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	b1 Create methodical approaches when dealing with
C6 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	
C9 Utilize codes of practice	d1 Describe codes of practice.
C12 Achieve an optimum design of Concrete structure.	b1 Achieve an optimum design of Reinforced Concrete

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Introduction to tall building structures	14	14	-
2	Design criteria for tall building structures — loading - structural formation — modeling for analysis — braced frames — rigid frames — shear walls		14	-
	Total	28	28	-

5. Teaching and learning methods:

Topics	Fac e to fac e lect ure	Onl ine lect ure	Flip pe d cla ssr oo m	Pre sen tati on an d mo vie s	Dis cus sio n	Pro ble m sol vin g	Bra in sto rmi ng	Pro ject s	Sit e visi ts	Self -le arn ing an d Res ear	Co op era tiv e	Dis cov eri ng	Mo deli ng	Lab
Introductio n to tall building structures		х					х	x						x
Design criteria for tall building structures –		х					х	x						x

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

loading - structural formation - modeling							
for analysis							
- braced frames -							
rigid frames - shear walls							

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	i knawidaod ana ckilic iranciar amanoi
4	Electronic model system for the Institution.	E. learning

7. Student Evaluation:

7.1 Student Evaluation method:

7.1 Ottadil Evaluation modification			
No.	Evaluation Method	Competencies	LO's
1	Mid torm eveningtion	C2	a2, c3
1	Mid-term examination	C 9	a1
2	Semester work	C2	a2, c3
		C9	a1
		C2	a2, c3
3	Final term examination	C 9	a1
		C12	b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	semester work	2nd,7th, 9th
2	Mid Term examination	8th
3	Practical Examination	14th
4	Final term examination	15 <i>th</i>

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	1000/
Total	100%
	4

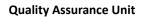
8. List of References:

No.	Reference List
1	EL-Metwally, S.E., and Hosny, H.M.H., "Design Fundamental of Structure Concrete.". Utilities and Urban Communities, "Egyptian Code for Design and Construction of Reinforced
	Concrete Structures. "Cairo 2020.
2	Cairo. 2018. EL-Behairy, S., "Reinforced Concrete Design Handbook, ". Gouda M. A., Helmy,
-	M., and Korshe, I., "Basic Design of Reinforced Concrete Structures. "Alexandria. 2015.

9. Facilities required for teaching and learning:

No	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

10. Matrix of knowledge and skills of the course:


No	Topic	Aims	Competencies	LO's
1	Introduction to tall building structures	4,7,1 0	C2	a2
2	Design criteria for tall building structures – loading - structural formation – modeling for analysis – braced frames – rigid frames – shear walls	4,7,1 0	C2 C9 C12	a2, c3 a1 b1

Course Coordinator: Dr. Shady Ragheb

Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Foundation Engineering (2) (CIE543)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Foundation Engineering (2)
Course Code	CIE543
Year/Level	Level 5
Specialization	Major
Authorization Date of Course Specification	-
Pre- request	Completing of 100 hr. + CIE505

To a shine he area	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims

No.	Aims
4	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.
7	Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.
10	Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	b3 Applying engineering basics that are relevant to the

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C2 Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	c2 Develop suitable experimentation and/or simulation.
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	c2 Applying engineering design procedures to generate cost-effective solutions while adhering to the principles and contexts of sustainable design and development
C4 Utilize contemporary technologies, codes of practice and standards, quality guidelines and safety requirements.	a1 Describe quality assurance systems, codes of practice, and standards.
C12 Achieve an optimum design of foundations.	b1 Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures.

4. Course Contents:

No.	Topics	Lectures	Tutorial	Practical
1	Hydraulics of soils	4	4	-
2	Flow net in soil	6	6	-
3	Application of flow	6	6	-
4	Deep foundation	6	6	-
5	Sheet piles	6	6	-
	Total	28	28	-

5. Teaching and learning methods:

5. leaching and	i learning illeu	ious.												
Topics	Fa ce to fa ce le ct ur e	O nli ne le ct ur e	Fli pp ed cl as sr oo m	Pr es en ta ti on an d m	Di sc us si on	Pr ob le m so Ivi ng	Br ai n st or mi ng	Pr oj ec ts	Sit e vis its	Se If-I ea rn in g an d Re se	Co op er ati ve	Di sc ov eri ng	M od eli ng	La b

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

							_		 _	
			ie					ar		
			S					ch		
Hydraulics of soils	х	х		Х	Х	Х				
Flow net in soil	х	х		х	х	х				
Application of flow	х	Х		Х	Х	Х				
Deep foundation	х	х		Х	Х	Х				
Sheet piles	х	х		х	х	х				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason		
1	Presentation of the course in digital material	Better access any time		
2	Wed communication with students	Better communication with certain cases		
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	i knowledge and skills transter amongl		
4	Electronic model system for the Institution.	E. learning		

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
		C1	a3, b3, c3
1	Midterm examination	C2	c2
		C3	c2
		C2	c2
2	Semester work (quizzes, sheets, report)	C3	c2
		C4	a1
		C1	a3, b3, c3
		C2	c2
3	Final term examination	C3	c2
		C4	a1
		C12	b1

7.2 Evaluation Schedule:

No	Evaluation Method	Weeks
1	Midterm examination	8th
2	Semester work	continuous evaluation
3	Final term examination	15 th

7.3 Weighting of Evaluation:

No. Evaluation Method We	ights
--------------------------	-------

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Midterm examination	20%
2	Semester work	20%
3	Final term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	Course notes:
	Lecture notes prepared by the course coordinator +Solved examples.
2	Das, B., M. (2017), "Principles of Foundation Engineering", CENGAGE Learning,
3	Gulhati, S.K. and Datta, M. (2015), "Geotechnical Engineering", Tata McGraw-Hill, New Delhi.
4	Essential books (textbooks):
	Egyptian Code of Practice for Soil Mechanics and Foundations (2002)

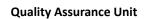
9. Facilities required for teaching and learning:

	Facility						
1	Lecture classroom	3	White board				
2	Seminar	4	Data show system				

10. Matrix of knowledge and skills of the course:

No	Topic	Aims	Competencies	LO's
			C1	a3, b3, c3
1	Hydraulics of soil	4,7,10	C2	c2
			C3	c2
			C1	a3, b3, c3
2	Flow net in soil	4,7,10	C2	c2
			C3	c2
			C2	c2
3	Application of flow	4,7,10	C3	c2
			C4	a1
			C2	c2
4	Deep foundation	4,7,10	C3	c2
			C4	a1
5	Sheet pile	4,7,10	C1	a3, b3, c3

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta


	C2	c2
	C3	c2
	C4	a1
	C12	b1

Course Coordinator: Dr. Hany Hashish

Head of Department: Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Special Concrete Structures (2) (CIE544)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Special Concrete Structures (2)
Course Code	CIE544
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre- request	Complete 100 h + CIE539

Tarabina hawa	Lectures Tutorial		Practical	
Teaching hours	2	2	-	

2. Course Aims

No.	Aims
4	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.
7	Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.
10	Select appropriate and sustainable technologies for construction of buildings. using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as structural analysis and mechanics, properties, and strength of materials.

3. Competencies:

Competencies	Learning Outcomes (LO'S)				
C2 Develop and conduct appropriate simulation, analyze, and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	in sustainable technologies for construction of buildings infrastructures and water structures.				

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	c2 Applying engineering design procedures to generate cost-effective solutions while adhering to the principles and contexts of sustainable design and development.
C4 Utilize codes of practice	c3 Describe codes of practice.
C6 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements	i reinforced concrete and steel striictiires, folindations i
C9 Achieve an optimum design of	d1 Achieve an optimum design of Reinforced
Reinforced Concrete.	Concrete
C12 Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.	b1 Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures.

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Introduction to composite construction	2	2	-
2	Materials of composite structures	6	6	-
3	Simply supported composite beams	6	6	-
4	Continuous supported composite beams	6	6	-
5	Shear connections – composite columns – composite slabs	8	8	-
	Total	28	28	-

5. Teaching and learning methods:

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Topics	Fac e to fac e lect ure	Onl ine lect ure	Flip pe d cla ssr oo m	Pre sen tati on an d mo vie s	Dis cus sio n	Pro ble m sol vin g	Bra in sto rmi ng	Pro ject s	Sit e visi ts	Self -le arn ing an d Res ear ch	Co op era tiv e	Dis cov eri ng	Mo deli ng	Lab
Introductio														
n to composite construction		х			х			х						х
Materials of composite structures		x			x			х						х
Simply supported composite beams		x			x			х						x
Continuous supported composite beams		x			х			x						x
Shear connections – composite columns – composite slabs		x			x			х						х

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	I KNAWIDAGO SHA CKIIIC TESHCEDE SMANGI
4	Electronic model system for the Institution.	E. learning

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Mid tarm avamination	C2	a2, c3
1	Mid-term examination	C 9	a1, b1
	Semester work	C2	a2, c3
2		C9	a1
		C2	a2, c3
3	Final term examination	C 9	a1
		C12	b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	semester work	2nd,7th, 9th
2	Mid Term examination	8th
3	Practical Examination	14 th
4	Final term examination	15 <i>th</i>

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	EL-Metwally, S.E., and Hosny, H.M.H., "Design Fundamental of Structure Concrete." Ministry of Housing. Utilities and Urban Communities, "Egyptian Code for Design and Construction of
2	Reinforced Concrete Structures. "Cairo 2020. Hilal.M., "Reinforced Concrete Water Tanks." Marcou
3	Hilal M., "Design of Reinforced Concrete Halls," 2018

9. Facilities required for teaching and learning:

No	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

10. Matrix of knowledge and skills of the course:

No	Торіс	Aims	Competencies	LO's
1	Introduction to composite construction	4,7,10	C2	a2
2	Materials of composite structures	4,7,10	C2	a2, c3
			C9	a1
			C12	b1
3	Simply supported composite beams	4,7,10	C2	a2
4	Continuous supported composite beams	4,7,10	C2	a2, c3
			C 9	a1
5	Shear connections – composite columns composite slabs	4,7,10	C2	a2, c3
			C 9	a1
			C12	b1

Course Coordinator: Assoc. Prof. Dr. Mohamed Gabr **Head of Department:** Prof. Dr. Mohamed Elkiki

Date of Approval: 2022

Railway Engineering (CIE545)

1. Basic Information:

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Railway Engineering
Course Code	CIE545
Year/Level	Level 5
Specialization	Major
Authorization Date of Course Specification	-
Pre- request	Complete 100 h

Tanahina hawa	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims

No.	Aims
7	Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.
10	Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using numerical techniques, experiment measurements, and testing by applying a full range of civil engineering fields such as structural analysis and mechanics, properties and strength of materials, surveying, soil mechanics, hydrology and fluid mechanics.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C1 Identify, formulate, and solve complex	a3 Explain the basic principles of engineering for
engineering problems by applying	railways planning.
engineering fundamentals, basic science,	b2 Using scientific concepts and theories that are
and mathematics.	relevant to railway engineering.
C2 Develop and conduct appropriate	b2 Conduct basic experiments to learn about the
experimentation and/or simulation, analyze	applications of structural analysis and mechanics,
and interpret data, assess, and evaluate	properties and strength of materials, surveying, soil
findings, and use statistical analyses and	mechanics, hydrology, and fluid mechanics in the
objective engineering judgment to draw	fields of transportation and traffic, roadways and
conclusions.	airports, railways, sanitary works, irrigation, water

any other emerging field relevant to the

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

resources and harbors; or any other emerging field relevant to the discipline. C12 Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining **b2** Achieve an optimum design of works for Structures; and at least three of the transportation and traffic, roadways and airports, following civil engineering topics: railways, sanitary works, irrigation, water resources Transportation and Traffic, Roadways and and harbors; or any other emerging field relevant to Sanitary Airports, Railways, Works, the discipline. Irrigation, Water Resources and Harbors; or

4. Course Contents:

discipline.

No.	Topics	Lecture	Tutorial	Practical
1	Engineering principals for railways planning	2	2	-
2	Railways components and specifications	4	4	-
3	Design of different parts of railways	6	6	-
4	Types of stations	2	2	-
5	Types of signals	2	2	-
6	Maintenance	4	4	-
7	Planning of railways lines	4	4	-
8	Transportation economy	2	2	-
9	Management and insurance.	2	2	-
	Total	28	28	-

5. Teaching and learning methods:

5. leaching and lear	<u>8 .</u>		, , , , , , , , , , , , , , , , , , , 											
Topics	Face -to-Face Lecture	Online Lecture	Flipped Classroom	Presentation and movies	Discussion	Problem solving	Brain storming	Projects	Site visits	Self -learning and Research	Cooperative	Discovering	Modeling	qel
Engineering principals for railways planning	х	х			х	х	х							

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

Railways components and specifications	x	x		x	x	x				
Design of different parts of railways	x	x		x	x	x				
Types of stations	х	х		х	х	х				
Types of signals	х	х		х	х	х				
Maintenance	х	х		х	х	х				
Planning of railways lines	х	х		х	x	х				
Transportation economy	х	х		х	х	х				
Management and insurance.	x	х		х	x	х				

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students.	Knowledge and skills transfer among different level of students.

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
		C1	a3, b2
1	Mid-term examination	C2	b2
		C12	b2
		C1	a3, b2
2	Semester work	C2	b2
		C12	b2
		C1	a3, b2
3	Final term examination	C2	b2
		C12	b2

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	semester work	2nd,7th, 9th
2	Mid Term examination	8th
3	Final term examination	15 <i>t</i> ħ

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

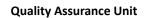
8. List of References:

No.	Reference List
1	E. B. Machaly, "Behavior, analysis and design of steel work connections ", vol. 3, 2020
2	Railway development 2018, Dr frank pruinsma and DR Irik pills.

9. Facilities required for teaching and learning:

No	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

No	Торіс	Aims	Competencies	LO's
1	Engineering principles for railways planning	7	C1	a3, b2
2	Railways components and specifications	10	C1	a3, b2
3	Design of different parts of railways	7	C2	b2
	Design of different parts of failways	,	C12	b2
4			C1	a3, b2
	Types of stations	7, 10	C2	b2
			C12	b2
5			C1	a3, b2
	Types of signals	7	C2	b2
			C12	b2
6	maintenance	10	C2	b2
	indifferiance	10	C12	b2
7	Planning of railways lines	7	C2	b2
	Planning of railways lines		C12	b2
8	Transportation economy	10	C1	a3, b2



Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

9	Management and insurance.	10	C1	a3, b2

Course Coordinator: Prof. Dr. Mohamed Elkiki Head of Department: Prof. Dr. Mohamed Elkiki

Reinforced Concrete (5) (CIE546)

1. Basic Information

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Reinforced Concrete (5)
Course Code	CIE546
Year/Level	Level 5
Specialization	Minor – Elective Course
Authorization Date of Course Specification	-
Pre- request	Complete 100 h + CIE539

Too shing house	Lectures	Tutorial	Practical
Teaching hours	2	2	-

2. Course Aims

No.	Aims
	Use the techniques, skills, and current engineering tools required for engineering practice
4	by taking full responsibility for one's own learning and development, participating in lifelong
	learning, and demonstrating the ability to pursue postgraduate and research studies.
7	Achieve an optimum design of Reinforced Concrete.
	Select appropriate and sustainable technologies for construction of buildings. using
10	numerical techniques, experiment measurements, and testing by applying a full range of
10	civil engineering fields such as structural analysis and mechanics, properties, and strength
	of materials.

3. Competencies:

Competencies	Learning Outcomes (LO'S)
C2 Develop and conduct appropriate simulation, analyze, and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	 a2 Define the principles, basic properties, and features of construction material, as well as their use in sustainable technologies for construction of buildings. c3 Applying statistical analyses and objective engineering judgment to draw conclusions.
C9 Utilize codes of practice	d1 Describe codes of practice.
C12 Achieve an optimum design of Reinforced Concrete.	b1 Achieve an optimum design of Reinforced Concrete

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

4. Course Contents:

No.	Topics	Lecture	Tutorial	Practical
1	Design shell structure	12	12	-
2	design of pre-stressed reinforced concrete	16	16	-
	Total	28	28	-

5. Teaching and learning methods:

J. Teaching	5 aa .	carrin	<u> </u>											
Topics	Fac e to fac e lect ure	Onl ine lect ure	Flip ped clas sro om	Pre sen tati on and mo vie s	Dis cus sio n	Pro ble m sol vin g	Bra in sto rmi ng	Pro ject s	Site visi ts	Self -lea rni ng and Res ear ch	Co ope rati ve	Dis cov eri ng	Mo deli ng	Lab
Design shell structure		x					х							x
design of pre-stress ed reinforce d concrete		x					х							x

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
1	Presentation of the course in digital material	Better access any time
2	Wed communication with students	Better communication with certain cases
3	Asking small groups to do assignments; each composed of low, medium, and high-performance students	IKNOWIANTA AND CHIIC TRANCTAR AMONDI
4	Electronic model system for the Institution.	E. learning

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Mid-term examination	C2	a2, c3
1 1	Wild-term examination	C9	a1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Semester work	C2 C9	a2, c3 a1
	Final term examination	C2	a2, c3
3		C 9	a1
		C12	b1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	semester work	2nd,7th, 9th
2	Mid Term examination	8th
3	Practical Examination	14 th
4	Final term examination	15 <i>t</i> ħ

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Mid-term examination	20%
2	Semester work	20%
3	Final-term examination	60%
	Total	100%

8. List of References:

No.	Reference List
1	Hilal.M., "Reinforced Concrete Water Tanks." Marcou,
2	Hilal M., "Design of Reinforced Concrete Halls," 2018
3	Reinforced Concrete Design," Cairo Univ., 2019. Abdel Rahman, A.,
4	"Fundamental of Reinforced Concrete Incorporating the Egyptian Code of 2020."

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Data Show system

N o	Topic	Aims	Competencies	LO's
			C2	a2, c3
1	Design shell structure	4,7,10	C 9	a1
			C12	b1

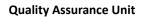
Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Design of pre-stressed reinforced concrete	4,7 ,10	C2 C9 C12	a2, c3 a1 b1
---	--	---------	-----------------	--------------------

Course Coordinator: Prof. Dr. Khaled Fawzy Head of Department: Prof. Dr. Mohamed Elkiki

<u>Training (1)</u> (ENG430)

1. Basic Information


Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Training (1)
Course Code	ENG430
Year/Level	Level 4
Specialization	Major
Authorization Date of Course Specification	-
Pre- request	Complete Previous Level

Too shing hours	Lectures	Tutorial	Practical
Teaching hours	-	-	80

2. Course Aims

No.	Aims
2	Work in and manage a diverse team of professionals from various engineering disciplines, taking responsibility for own and team performance; and behave professionally and adhere to engineering ethics and standards.
5	Communicate effectively with a variety of audiences using a variety of forms, methods, and languages; cope with academic and professional issues in a critical and creative manner; and display leadership, business administration, and entrepreneurial abilities.
7	Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.
8	Plan and manage construction processes; address construction defects, instability and quality issues; maintain safety measures in construction and materials; and assess environmental impacts of projects.

3. Competencies:

Competencies	Learning Outcomes (LO'S)			
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	 a1 Learn the general principles of design techniques specific to reinforced concrete and steel structures, foundations and earth retaining structures. a2 Understand the professional ethics and impacts of engineering solutions on society and environment. a3 Recognizes the various construction defects, instability and quality issues and assess environmental impacts of projects. b1 Judge engineering decisions considering balanced costs, benefits, safety, quality, reliability, and environmental impact. c2 Applying engineering design procedures to generate cost-effective solutions while adhering to the principles and contexts of sustainable design and development. 			
C5 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	 a1 Define technical language and report writing. b1 Assess different ideas, views, and knowledge from a range of sources. c1 Prepare technical reports. d1 Search for information to engage in lifelong self-learning discipline. 			
C6 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	 a1 Show the appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures. c2 Acquire entrepreneurial skills. 			
C7 Function efficiently as an individual and as a member of multi-disciplinary and multicultural teams.	d1 Collaborate effectively within multidisciplinary team. d2 Work in stressful environment and within constraints. d3 Motivate individuals.			
C9 Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	d1Think creatively in solving problems of design. d2 Effectively manage tasks, time, and resources.			

4. Course Contents:

No.	Topics		Practical
1	The training aims to explore students' ability and skills to comprehensively address and manage architectural and technical issues.	-	37

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	A complete set of appropriately presented drawings, accompanied by a detailed report of the training's attributable studies and potential considerations should be implemented by each student.		5
	Total		42

5. Teaching and learning methods:

5. leaching and le	ammi	gillet	nous.											
Topics	Fac e to fac e lec tur e	On lin e lec tur e	Fli pp ed cla ssr oo m	Pre se nta tio n an d mo vie s	Dis cus sio n	Pr obl em sol vin g	Bra in sto rm ing	Pr oje cts	Sit e visi ts	Sel f-le arn ing an d Re se arc h	Co op era tiv e	Dis co ver ing	M od eli ng	La b
The training aims to explore students' ability and skills to comprehensivel y address and manage architectural and technical issues	x				x	x	x		x	x	x			
A complete set of appropriately presented drawings, accompanied by a detailed report of the training's attributable studies and potential considerations should be implemented by each student	x			х	x		x	x						

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

6. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason		
1	Presentation of the course in digital material.	Better access any time.		
2	Asking small groups to do assignments; each composed of low, medium and high-performance students	Knowledge and skills transfer among different levels of students.		
3	Electronic model system for the Institution.	E. learning.		

7. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Oral Examination	C3	a1, b1, c2
1	Oral Examination	C 9	d1
		C3	a1, b1, c2
١	Final work (presentation, Report)	C5	a1, c1, d1
2		C7	d1, d3
		C 9	d1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Oral Examination	at the end of training
2	Final work (presentation, Report)	4 th

7.3 Weighting of Evaluation:

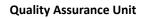
No.	Evaluation Method	Weights			
1	Oral Examination	50%			
2	Final work (presentation, Report)	50%			
	Total 100%				

8. List of References:

No.	Reference List
1	Subject studies

9. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Lab.



Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

No	Торіс		Competencies	LO's
	The training aims to explore students' ability and		C3	a2, a3, c2
1	1 skills to comprehensively address and manage		C5	b1
	architectural and technical issues.		C6	a1
	A complete set of appropriately presented			
	drawings, accompanied by a detailed report of the		C5	a1, c1, d1
2	training's attributable studies and potential	7,8	C7	d1, d2, d3
	considerations should be implemented by each		C 9	d1, d2
	student.			

Course Coordinator: Prof. Dr. Mohamed Elkiki **Head of Department:** Prof. Dr. Mohamed Elkiki

<u>Training (2)</u> (ENG530)

11. Basic Information

Program Title	Civil Engineering Program
Department Offering the Program	Civil Engineering Department
Department Responsible for the Course	Civil Engineering Department
Course Title	Training (2)
Course Code	ENG530
Year/Level	Level 5
Specialization	Major
Authorization Date of Course Specification	-
Pre- request	Complete Previous Level

Tanahina hawa	Lectures	Tutorial	Practical	
Teaching hours	-	-	42	

12. Course Aims

No.	Aims			
	Work in and manage a diverse team of professionals from various engineering disciplines,			
2 taking responsibility for own and team performance; and behave professional				
	to engineering ethics and standards.			
	Communicate effectively with a variety of audiences using a variety of forms, methods, and			
5 languages; cope with academic and professional issues in a critical and creative				
	and display leadership, business administration, and entrepreneurial abilities.			
	Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and			
7	Earth Retaining Structures; and at least three of the following civil engineering topics:			
Transportation and Traffic, Roadways and Airports, Railways, Sanitary Worl				
	Water Resources and Harbors; or any other emerging field relevant to the discipline.			
	Plan and manage construction processes; address construction defects, instability, and			
8	quality issues; maintain safety measures in construction and materials; and assess			
	environmental impacts of projects.			

13. Competencies:

Competencies	Learning Outcomes (LO'S)		
C3 Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	a1 Learn the general principles of design techniques specific to reinforced concrete and steel structures, foundations and earth retaining structures. a2 Understand the professional ethics and impacts of engineering solutions on society and environment. a3 Recognizes the various construction defects, instability and quality issues and assess environmental impacts of projects. b1 Judge engineering decisions considering balanced costs, benefits, safety, quality, reliability, and environmental impact. c2 Applying engineering design procedures to generate cost-effective solutions while adhering to the principles and contexts of sustainable design and development.		
C5 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	 a1 Define technical language and report writing. b1 Assess different ideas, views, and knowledge from a range of sources. c1 Prepare technical reports. d1 Search for information to engage in lifelong self-learning discipline. 		
C6 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	a1 Show the appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures. c2 Acquire entrepreneurial skills.		
C7 Function efficiently as an individual and as a member of multi-disciplinary and multicultural teams.	d1 Collaborate effectively within multidisciplinary team. d2 Work in stressful environment and within constraints. d3 Motivate individuals.		
C9 Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	d1Think creatively in solving problems of design. d2 Effectively manage tasks, time, and resources.		

14. Course Contents:

No.	Topics	Tutorial	Practical
1	The training examines and measures students' knowledge, skills, and collective outputs gained throughout their study in the faculty and department in a combined manner, that reflects identity and creativity in all its preliminary and analytical phases.	-	37

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

2	Presentations will be emphasizing the technical contents.	-	5
	Total	•	42

15. Teaching and le	5. Teaching and learning methods:													
Topics	Fac e to fac e lec tur e	On lin e lec tur e	Fli pp ed cla ssr oo m	Pre se nta tio n an d mo vie s	Dis cus sio n	Pr obl em sol vin g	Bra in sto rm ing	Pr oje cts	Sit e visi ts	Sel f-le arn ing an d Re se arc h	Co op era tiv e	Dis co ver ing	Mo deli ng	L a b
The training aims to explore students' ability and skills to comprehensivel y address and manage architectural and technical issues	x				x	x	x		х	х	х			
A complete set of appropriately presented drawings, accompanied by a detailed report of the training's attributable studies and potential considerations should be implemented by each student	x			x	x		x	x						

16. Teaching and learning methods for disabled students:

No.	Teaching Methods	Reason
INO.	leaching Methods	iteasoii

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

1	Presentation of the course in digital material	Better access any time
2	Asking small groups to do assignments; each composed of low, medium, and high-performance students	
3	Electronic model system for the Institution.	E. learning

17. Student Evaluation:

7.1 Student Evaluation method:

No.	Evaluation Method	Competencies	LO's
1	Oral Evamination	C3	a1, b1, c2
1	Oral Examination	C9 d1	d1
		C3	a1, b1, c2
,	Final work (presentation Deport)	C5	a1, b1, c2 a1, c1, d1
2	Final work (presentation, Report)	C7	d1, d3
		C 9	d1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks
1	Oral Examination	at the end of training
2	Final work (presentation, Report)	4 th

7.3 Weighting of Evaluation:

No.	Evaluation Method	Weights
1	Oral Examination	50%
2	Final work (presentation, Report)	50%
	Total	100%

18. List of References:

No.	Reference List
1	Subject studies

19. Facilities required for teaching and learning:

No.	Facility
1	Lecture classroom
2	Seminar
3	White board
4	Lab.

No	Торіс	Aims	Competencies	LO's
	The training examines and measures students'	257	C3	a2, a3, c2
1	knowledge, skills, and collective outputs gained	2,5,7,	C5	b1
	throughout their study in the faculty and	8	C6	a1

Ministry of Higher Education Higher Institute of Engineering and Technology New Damietta

	department in a combined manner, that reflects identity and creativity in all its preliminary and analytical phases.		C9	d1, d2
2	Presentations will be emphasizing the technical contents.	2,5	C5 C7	a1, c1, d1 d1, d2, d3

Course Coordinator: Prof. Dr. Mohamed Elkiki **Head of Department:** Prof. Dr. Mohamed Elkiki