Department: Civil Engineering		Date: 17/6/2023 Level: Five
Final Term: Exam		Time allowed: 3.0 Hrs
Semester: Second (Spring)	Full marks: 60 Marks	
Regulation: Credit Hours	Ministry of Higher Education	Number of Pages: 2 pages
Course title: Design of Irrigation		
Works	The Higher Institute of	
Engineering and Technology,		
Course code: CIE504	New Damietta	

- Answer all the questions.
- Net sketch drawings are required.
- Any missing data can be reasonably assumed.

Question (1): (13 Marks) (c2-a2, cl1-a2, c13-c1)
For the Counterfort wall shown in the figure,

Check the overall stability of the wall and design $\underline{\mathbf{S}_{1} \text { and } S_{2} \text { slabs (Calculate area steel only). }}$

(spacing of counterfort $=\mathbf{3 m}$), $\mathrm{F}_{\text {all }}$ for the soil $14 \mathrm{t} / \mathrm{m}^{2}, \Phi=30^{\circ}$ L.L 0.9t $/ \mathrm{m}^{2}, \quad \gamma=1.8 \mathrm{t} / \mathrm{m}^{3}$

Question (2): (17 Marks) (c2-a2, cl1-a2, cl3-c1)
a- State different uses of weir structures and their main types (use sketches).
b- A R.C. Bridge (Slab with main girder type) consists of two vents is supposed to be constructed at the site of intersection between main road and a channel. The following data are available: The width of one vent is $\mathbf{7 . 5 \mathbf { ~ m }}$ and the width of the pier is $\mathbf{1 . 5 m}$

- Data for the Roadway:- Roadway width $=8.00 \mathrm{~m}-$ Bank level $=(10.00)-$ Side slope $=2: 1-$ Berm level $=(8.00)$
- Data for the Channel:- Bed level $=(4.00)$ - Berm level $=(8.00)$ - Bank level $=(10.00)$ - Bed width $=16.5 \mathrm{~m}$ - Side slopes are $1: 1 \& 2: 1$
-Data for the Bridge:- Bridge width (excluding sidewalks) $=\mathbf{8 . 0 0} \mathbf{~ m}$ - Sidewalk width $=\mathbf{2 . 0 0} \mathbf{~ m}$-Spacing between Girders $=\mathbf{2 . 0 0} \mathbf{m}$-- Concentrated live load $=\mathbf{2 0}$-ton lorry - Pedestrian live load $=\mathbf{5 0 0}$ $\mathbf{K g} / \mathbf{m}^{2}$ -

It is required to:

1. Design the R.C. slab of this bridge.
2. Design the sidewalk of the bridge.
3. Calculate the values of moment and shear for the main girder

Question (3): (22 Marks) (c2-a2, c11-a2, c13-c1)
I - A R.C. 2 vents culvert is to be constructed to pass the flow of a canal under a highway. The available data for the design are:

Canal date: - Bed width $=4.0 \mathrm{~m}$, - Bed level $=(10.00) \mathrm{m}$, - Water level $=(11.90) \mathrm{m}-$ Berm level $=(12.50)-$ Berm width $=5.00 \mathrm{~m}-$ Bank level $=(14.00) \mathrm{m}-$ Bank width $=10.0 \mathrm{~m}$, - Inner side slope $=$ $2: 1$, - Outer side slope $=2: 1$.
$\underline{\text { Road data: }}$ - Side slope of road $=2: 1,-$ Road width $=10.0 \mathrm{~m},-$ Land level $=(14.50) \mathrm{m}$.
Max. canal discharge $=9 \mathrm{~m}^{3} / \mathrm{s}$, Inlet and outlet wing walls are box type, Screen angle $=60^{\circ}$, Bars diameter $=2.5 \mathrm{~cm}$ and distance between bars $=30 \mathrm{~cm}$.

If the heading up not exceeds 20 cm , the moving load is supposed to be $3.0 \mathrm{t} / \mathrm{m}^{2}$ and $\gamma_{\text {bulk }}$ for soil $=1.7 \mathrm{t} / \mathrm{m}^{3}$, it is required to:
1 - Calculate the actual velocity through the Culvert and the actual Heading up.
2 - Calculate the total vertical and horizontal loads on the culvert cross section.
(7 Marks)

II - It is required to construct a steel pipe syphon at the crossing of canal and drain according the following data:

	Bed level	H.W.L.	Berm level	Bank level	Bed width	Bank width	Inner slope	Outer slope
Canal	(11.50)	(13.90)	(14.50)	(16.00)	12.0	10.0	$3: 2$	$3: 2$
Drain	(10.00)	(11.65)	(14.00)	(15.00)	7.0	8.0	$3: 2$	$3: 2$

Max. drain discharge $=7.8 \mathrm{~m}^{3} / \mathrm{s}$, Inlet and outlet wing walls are box type, Screen angle $=60^{\circ}$, Bars diameter $=2.5 \mathrm{~cm}$ and distance between bars $=30 \mathrm{~cm}$.

If the No. of vents is 3 , the diameter of the pipe is 1.5 m and the heading up not exceed 20 cm , it is required to:
1 - Specify if the syphon will be straight or bending, also is the type of walls at inlet and exit will be box type or broken?
(4 Marks)
2 - Calculate the actual velocity through the syphon and the actual Heading up.
(4 Marks)
3 - Calculate the thickness of the pipe and then check the stress for the internal pressure force only.
(3 Marks)
Question (4): (8 Marks) (c2-a2, c11-a2, c13-cl)
1 - Explain briefly with neat sketches, how to operate the lock?
(2 Marks)
2 - What is the type of failures of dams? discuss briefly the environmental impacts of dams. (2 Marks)
3 - The table below gives the inflow hydrograph for a river with max. reservoir storage $=1200 \mathrm{Mll} \mathrm{m}^{3}$. The water demand is $600 \mathrm{Mll} \mathrm{m}^{3} / \mathrm{year}$. It is required to determine the total volume of water that will be spilled out over the given years.
(4 Marks)

Year	2001	02	03	04	05	06	07	08	09	10	11	12	13	14	15
Inflow Mllm³/year	622	585	743	1055	1315	763	986	358	514	826	1012	756	1387	516	597

Best wiskes

