Department: Civil E	ngineering
Level: 5	
Semester: Second set	mester
Subject: Inland Nav	igation and
Harbour Engineerin	2
Code: CIE 506	

Ministry of Higher Education Higher Institute for Eng. and Tech. New Damietta Mid-Term Exam Time allowed: 1.0 hr Page numbers:1 Date 01/04/2023 Total Degree: 20 degrees

Answer all questions and assume any missing data.

QUESTION 1 (6 degrees):

a) Choose the correct answer

- 1. If the water depth at point A , d= 60.00 m , wave height H= 3.5 m , wave period
- T=8 sec. and Kr= 1.00, wave height at point B with water depth d = 10.00 m, Kr =
- 0.75 will be (2.33 m 2.44 m 2.60 m)

- b) Show by sketch the difference between :
 - Seawall, Breakwater.
 - Diffraction, Refraction along irregular shore line
 - Spring Tide, Neap Tide.

Question (2)(10marks)

a) Plot a wind rose using bar method only

Wind speed (knots)	N	E.	S	W
1-10, 34, 154	1200	800	600	1100
11-20	800	600	300	700
21-30	600	400	- 700	300

For the Given number of hours occurrence for the wind for year 2022 at Damietta

b) If fetch Length = 200 N.M. and wind speed = 20 Knots.

1. It is required to calculate the wave length L, wave height H, celerity C.

2. Find wave height at point A having Polar Coordinates (150, 60°) from tip of single breakwater, if waves strike the single breakwater at angle 180° , and water depth of the tip d=15.0 and Kr= 0.70

Question (3) (4 marks)

a-	Calculate H _{sig} , H _{r.m}	.s., Havg a	nd Hmax 1	1:			
1	Wave Height (m)	3.5	5.5	4.0	4.5	6.5	5.0
	No. of Wayes	10	35	0	25	42	12

With my best wishes Prof.Dr.Osami Rageh

Model Answer

QUESTION 1 (6 degrees):

- a) <u>Choose the correct answer</u>
- 1. If the water depth at point A, d= 60.00 m, wave height H= 3.5 m, wave period T= 8 sec. and Kr= 1.00, wave height at point B with water depth d = 10.00 m, Kr = 0.75 will be

- 3. If wind speed= 20 knots, duration = 12 hrs and F = 100 N.M. So the average wave height is

- a) Show by sketch the difference between:
- Seawall, Breakwater.

Breakwater

Seawall

Bay Bay Contours Orthogonals

Refraction along irregular shore line

QUESTION 2 (10 degrees) :

a) Plot a wind rose using bar method only

Total Recorded Hours = 2600 + 1800 + 1600 + 2100 = 8100 hrs. Total unrecorded hours = 8760 – 8100 = 660 hrs.

Ratio of unrecorded hours $=\frac{660}{8760} \times 100 = 7.53$ %

	N	Е	S	W
1 - 10	14.81	9.88	7.41	13.58
11 - 20	9.88	7.41	3.70	8.64
21 - 30	7.41	4.94	8.64	3.70

b) If the fetch Length = 200 N.M. and wind speed = 20 Knots.

1. It is required to calculate the wave length L, wave height H, celerity C. Solution

$$H_s = H_0 = 7.9 \text{ ft.} \times 0.3048 = 2.41 \text{ m}$$
 t = 8.0 Sec. (Fetch limited)
 $L_0 = 1.56 \ T^2 = 1.56 \ \times 8.0^2 = 99.84 \ m$
 $H_0 = 2.41 \ m$
 $C_0 = 1.56 \ T = 1.56 \ \times 8.0 = 12.48 \ m$

2. Find wave height at point A having Polar Coordinates $(150, 60^{\circ})$ from tip of single breakwater, if waves strike the single breakwater at angle 180° , and water depth of the tip d = 15.0 and K_r = 0.70

Solution

$$L_{0} = 1.56 \ T^{2} = 1.56 \ \times 8.0^{2} = 99.84 \ m$$

$$\frac{d}{L_{0}} = \frac{15}{99.84} = 0.15 \ From \ table \ get \qquad \frac{d}{L} = 0.1833 \qquad K_{s} = 0.9138$$

$$\therefore \ H_{tip} = H_{0} \ K_{r} \ K_{s} = 2.41 \ \times \ 0.7 \ \times \ 0.9138 = 1.54 \ m$$

$$\frac{d}{L} = \frac{15}{L} = 0.1833 \qquad L = 81.83 \ m \qquad \frac{r}{L} = \frac{150}{81.83} = 1.83$$
From Chart where, $\theta = 180^{\circ} \ \beta = 60^{\circ} \qquad \frac{r}{L} = 1.83 \qquad \therefore \ K_{D} = 0.15$

$$\therefore \ H_{A} = H_{tip} \ K_{D} = 1.54 \ \times \ 0.15 = 0.231 \ m$$

QUESTION 3 (4 degrees) :

a) Calculate H_{sig} , $H_{r.m.s.}$, H_{avg} , H_{max} if :

Wave Height (m)	6.5	5.5	5.0	4.5	3.5
No. of Waves	42	35	12	25	10

$$H_{sig} = \frac{6.5 + 5.5}{2} = 6.00 \text{ m}$$
$$H_{r.m.s} = \frac{1}{\sqrt{2}} H_{sig.} = \frac{1}{\sqrt{2}} \times 6.00 = 4.24 \text{ m}$$
$$H_{av.} = 0.886 H_{sig} = 0.886 \times 6.00 = 5.32 \text{ m}$$
$$H_{max} = 1.87 H_{sig} = 1.87 \times 6.00 = 11.22 \text{ m}$$