Department: Civil Engineering 1 crel: 5
Semester: Second semester
Subject: Inland Vavigation and
Harbour Enginecring
Code: CIE 506

Ministry of Higher Education Higher Institute for Eng, and Tech.

New Damietta

Mid-Term Exam
Time allowed: 1.0 hr
Page numbers:1
Date 01/04/2023
Total Degree: 20 degrees

Answer all questions and assume any missing data.
QUESTION 1 (6 degrees):
a) Choose the correct answer

1. If the water depth at point $\mathrm{A}, \mathrm{d}=60.00 \mathrm{~m}$, wave height $\mathrm{H}=3.5 \mathrm{~m}$, wave period $T=8 \mathrm{sec}$. and $\mathrm{Kr}=1.00$, wave height at point B with water depth $\mathrm{d}=10.00 \mathrm{~m}, \mathrm{Kr}=$ 0.75 will be \qquad ($2.33 \mathrm{~m}-2.44 \mathrm{~m}-2.60 \mathrm{~m}$)
2. Coastal Structures are subjected to the effects of \qquad
(Wind - Waves - Tidal current - Coastal sediment - All Previous Forces)
3. If wind speed $=20$ knots, duration $=12 \mathrm{hrs}$ and $\mathrm{F}=100 \mathrm{~N} . \mathrm{M}$.

So the average wave height is \qquad
$(6.20 \mathrm{ft}-7.0 \mathrm{ft}-8.5 \mathrm{ft})$
b) Show by sketch the difference between:

- Seawall, Breakwater.
- Diffraction, Refraction along irregular shore line
- Spring Tide, Neap Tide.

Question (2)(10marks)

a) Plot a wind rose using bar method only

For the Given number of hours occurrence for the wind for year 2022 at Damietta

Wind speed (knóts)	N	E.	S	W
$1-10,$	1200	800	600	1100
$11-20$	800	600	300	700
$21-30$	600	400	- 700	300

b) If fetch Length $=\mathbf{2 0 0}$ N.M. and wind speed $=\mathbf{2 0}$ Knots.

1. It is required to calculate the wave length L , wave height H , celerity C .
2. Find wave height at point A having Polar Coordinates ($150,60^{\circ}$) from tip of single breakwater, if waves strike the single breakwater at angle 180°, and water depth of the tip $\mathrm{d}=15.0$ and $\mathrm{Kr}=0.70$

Question (3) (4 marks)

a- Calculate $\mathrm{H}_{\text {iiz }}, \mathrm{H}_{\text {r.m.s. }}, \mathrm{H}_{\text {avg }}$ and $\mathrm{H}_{\text {max }}$ if :

Wave Height (m)	3.5	5.5	4.0	4.5	6.5	5.0
No. of Waves	10	35	0	25	42	12

Model Answer

QUESTION 1 (6 degrees):
a) Choose the correct answer

1. If the water depth at point $A, d=60.00 \mathrm{~m}$, wave height $\mathrm{H}=3.5 \mathrm{~m}$, wave period $\mathrm{T}=8$ sec. and $\mathrm{Kr}=1.00$, wave height at point B with water depth $\mathrm{d}=\mathbf{1 0 . 0 0} \mathbf{~ m}, \mathrm{Kr}=\mathbf{0 . 7 5}$ will be \qquad

$$
(2.33 \mathrm{~m}-\underline{\mathbf{2} .44 \mathbf{~ m}}-2.60 \mathrm{~m})
$$

2. Coastal structures are subjected to the effects of
(Wind - Waves - Tidal currents - Coastal sediment - All Previous forces)
3. If wind speed $=\mathbf{2 0}$ knots, duration $=\mathbf{1 2} \mathrm{hrs}$ and $\mathrm{F}=100 \mathrm{~N} . \mathrm{M}$. So the average wave height is \qquad
$(\underline{\mathbf{6 . 2 0} \mathbf{f t}}-7.0 \mathrm{ft}-8.5 \mathrm{ft})$
a) Show by sketch the difference between:

- Seawall, Breakwater.

- Diffraction, Refraction along irregular shore line

Refraction along irregular shore line

- Spring Tide, Neap Tide.

Spring Tide

Neap Tide

QUESTION 2 (10 degrees) :

a) Plot a wind rose using bar method only

Total Recorded Hours $=2600+1800+1600+2100=8100$ hrs.
Total unrecorded hours $=8760-8100=660 \mathrm{hrs}$.
Ratio of unrecorded hours $=\frac{660}{8760} \times 100=7.53 \%$

	N	E	S	W
$\mathbf{1 - 1 0}$	14.81	9.88	7.41	13.58
$\mathbf{1 1 - 2 0}$	9.88	7.41	3.70	8.64
$\mathbf{2 1} \mathbf{- 3 0}$	7.41	4.94	8.64	3.70

b) If the fetch Length $=\mathbf{2 0 0}$ N.M. and wind speed $=\mathbf{2 0}$ Knots.

1. It is required to calculate the wave length L, wave height H, celerity C. Solution

$$
\begin{array}{r}
H_{s}=H_{0}=7.9 \mathrm{ft} \times 0.3048=2.41 \mathrm{~m} \quad \mathrm{t}=8.0 \mathrm{Sec} \\
L_{0}=1.56 \mathrm{~T}^{2}=1.56 \times 8.0^{2}=99.84 \mathrm{~m} \\
H_{0}=2.41 \mathrm{~m} \\
C_{0}=1.56 \mathrm{~T}=1.56 \times 8.0=12.48 \mathrm{~m}
\end{array}
$$

(Fetch limited)
2. Find wave height at point A having Polar Coordinates (150, 60°) from tip of single breakwater, if waves strike the single breakwater at angle 180°, and water depth of the tip $\mathbf{d}=15.0$ and $K_{r}=0.70$

Solution

$$
\begin{gathered}
L_{0}=1.56 \mathrm{~T}^{2}=1.56 \times 8.0^{2}=99.84 \mathrm{~m} \\
\frac{d}{L_{0}}=\frac{15}{99.84}=0.15 \quad \text { From table get } \quad \frac{d}{L}=0.1833 \quad K_{s}=0.9138 \\
\therefore H_{\text {tip }}=H_{0} \cdot K_{r} \cdot K_{s}=2.41 \times 0.7 \times 0.9138=1.54 \mathrm{~m} \\
\frac{d}{L}=\frac{15}{L}=0.1833 \quad \mathrm{~L}=81.83 \mathrm{~m} \quad \frac{r}{L}=\frac{150}{81.83}=1.83
\end{gathered}
$$

From Chart where, $\quad \theta=180^{0} \quad \beta=60^{0} \quad \frac{r}{L}=1.83 \quad \therefore K_{D}=0.15$

$$
\therefore H_{A}=H_{t i p} \cdot K_{D}=1.54 \times 0.15=0.231 \mathrm{~m}
$$

QUESTION 3 (4 degrees) :
a) Calculate $H_{\text {sig }}, H_{\text {r.m.s. }}, H_{\text {avg }}, H_{\text {max }}$ if :

Wave Height (m)	6.5	5.5	5.0	4.5	3.5
No. of Waves	42	35	12	25	10

$$
\begin{gathered}
H_{s i g}=\frac{6.5+5.5}{2}=6.00 \mathrm{~m} \\
H_{r . m . s}=\frac{1}{\sqrt{2}} H_{\text {sig. }}=\frac{1}{\sqrt{2}} \times 6.00=4.24 \mathrm{~m} \\
H_{a v .}=0.886 H_{\text {sig }}=0.886 \times 6.00=5.32 \mathrm{~m} \\
H_{\max }=1.87 H_{\text {sig }}=1.87 \times 6.00=11.22 \mathrm{~m}
\end{gathered}
$$

