

X-RAY

1. X-ray Source:

- X-ray devices typically feature an X-ray tube as the source of X-rays. Inside the tube, electrons are accelerated to high speeds and then suddenly decelerated or stopped, producing X-rays.
- This process occurs through interactions between electrons and a target material, usually a heavy metal like tungsten.
- 2. X-ray Beam Formation:
- The X-ray tube emits a broad spectrum of X-rays, which are then filtered to select the desired energy range for a particular application.
- Collimators and other components shape and direct the X-ray beam towards the target of interest.
- 3. Interaction with Sample:
- The X-ray beam interacts with the sample being studied. The sample may absorb or scatter X-rays depending on its composition and structure.

In analytical chemistry: EIS stands for Electrochemical Impedance Spectroscopy. It's a powerful technique used to study the electrochemical properties of materials, surfaces, and interfaces. EIS measures the impedance response of a system to an applied sinusoidal voltage over a range of frequencies, providing valuable information about processes like corrosion, adsorption, and reactions occurring at the electrode interface.

- 1. Principle: EIS works by applying a small amplitude AC voltage across an electrochemical cell and measuring the resulting current response. By varying the frequency of the applied voltage over a wide range, EIS can probe different electrochemical processes occurring at the interface.
- 2. Components: The basic setup includes a potentiostat / galvanostat to apply the voltage and control the current, a frequency response analyzer to measure the impedance, and electrodes immersed in an electrolyte solution.

What is a TEM?

Transmission electron microscopy TEM is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image.

TEM is the original form of electron microscope uses:

- A heigh voltage electron be to create an two dimensional (2D)image.
- These electrons are emmitted by an election gun accelerated by an anode and focused by electromagnetic lenses.
- And finally transmitted through the specimen.
- When it emerges from the specimen, the electron beam carries information about the internal structures of the specimen.
- Fixed dehydrated specimen are embedded in resin, stained with heavy metals such as uranium and lead.and inserted into the electron column in microscope.

SEM

What is SEM?

Scanning electron microscopy or, SEM, is advanced electron microscope that uses a focused beam of electrons to scan the surface of a simple. This technique differ from traditional microscopy by using electrons instead of light, enabling much higher resolutions.

The SEM is an instrument that produces:

- A largely Magnified image by using electrons instead of light to Form an image.
- A beam of electrons is produced at the Top of the microscope by an electron gun.
- The electron Beam follows a vertical path through the microscope, Which is held within a vacuum.

Made by:

أحمد ياسر عيسى 335-2020 مستوى رابع

Made by:

سما وليد عبدالفتاح 27-2021 مستوى ثالث

Made by:

حنین مادح مصطفی 348-2021 مستوی ثالث

Made by:

نورهان شریف شعیب 364-2021 مستوی ثالث