

2024-2025

CHEMICAL ENGINEERING PROGRAM SPECIFICATION فصول دراسية

Contents

Iter	ms		Pag	ges
1	Basic Information		2	
2	Professional Information		2	
	2.1	Program Vision	2	
	2.2	Program Mission	2	
3	Attributes of	the Graduates of Engineering	3	
4	Program Aim	ns		4
5	Competencies	of Engineering Graduate	5	
6	Academic Sta	ndards	10	
7	Reference Sta	ndards	10	
8	Program Cur	riculum Structure and Contents	11	
9	The Reference Frames Determinants For Bachelor Stage		17	
10	Contact Hours According to the Requirements		20	
11	Curriculum Structure distribution		24	
12	Curriculum Structure and Contents		32	
13	Elective Courses		41	
14	Methods and rules for student evaluation		43	
15	Program Evaluation		43	
16	Matrix betwee	een Teaching and Learning Methods and Learning		44
17	Chemical Eng	gineering Courses	45	
18	Appendix 1: Matrix for Chemical Engineering Program			
19	Appendix 2: Competencies and Aims for Chemical Engineering Program			
20	Appendix 3: The Matrix between Program Aims and Attributes			
21	Appendix 4: Mission and Goals with competencies			
22	Appendix 5:Mission and Goals with attributes			

Head of the department	Quality Assurance Unit Manager	Dean of the institute
Assoc.Prof.Dr./ Hend Elsayed Gadow	Assoc.Prof.Dr./ Ramadan Abdelghany Elkateb	Prof.Dr./ Osami Elsaeed Rageh

Chemical Engineering

B.Sc. Program Specification

1.	Basic Information			
1.1	Program title	Chemical Engineering		
1.2	Program type	Single		
1.3	Department (s)	Chemical Engineering		
1.4	Coordinator	Assoc.prof. Hend Elsayed Gadow		
1.5	External evaluator(s)			
1.6	Last date of program specifications approval	12-2024		

2. Professional Information:

2.1 Program Vision

The Chemical Engineering Program strives for regional and international recognition in teaching, research and community service. It enriches the standard of engineering education, continually enhances the quality and competence of graduated students, and stimulates outstanding research activities that contribute to the advancement of the chemical engineering profession and the development of local and regional industry.

2.2 Program Mission

The Chemical Engineering Program produces chemical engineers capable of meeting the technological and societal needs of Damietta government, Egypt and the Arab region. This mission is fulfilled by providing a broad curriculum in the basic sciences, process systems and design, unit operations, and in modern experimental and computing techniques. The program strives for academic excellence through continual assessment of the outcomes. The focus is on petroleum and petrochemical technology, environmental engineering, and water technology, material (foams, ceramics, rubber, plastics, painting and paper) technologies and industries.

3. Attributes of the Graduates of Engineering

The Engineering Graduate must:

3. Attributes

- 1. Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations;
- 2. Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation;
- 3. Behave professionally and adhere to engineering ethics and standards;
- 4. Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance;
- 5. Recognize his/her role in promoting the engineering field and contribute in the development of the profession and the community;
- 6. Value the importance of the environment, both physical and natural, and work to promote sustainability principles;
- 7. Use techniques, skills and modern engineering tools necessary for engineering practice;
- 8. Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post- graduate and research studies;
- 9. Communicate effectively using different modes, tools and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner; 10. Demonstrate leadership qualities, business administration and

entrepreneurial skills.

4.	Program aims
The	graduates of the chemical engineering program should be able to:
1	Master a broad range of engineering knowledge and specialized skills, as well as the ability to apply acquired knowledge in real-world situations by applying theories and abstract thinking in analytic critical and systemic thinking to identify, diagnose, and solve engineering problems of varying complexity and variation.
2	Work in and manage a diverse team of professionals from various engineering disciplines, taking responsibility for own and team performance; and Behave professionally and adhere to engineering ethics and standards.
3	Recognize his or her role in promoting engineering and contributing to the profession's and community's development; by appreciating the importance of the environment, both physical and natural, and working to promote sustainability concepts.
4	Use the techniques, skills, and current engineering tools required for engineering practice by taking full responsibility for one's own learning and development, participating in lifelong learning, and demonstrating the ability to pursue postgraduate and research studies.
5	Communicate effectively with a variety of audiences using a variety of forms, methods, and languages; cope with academic and professional issues in a critical and creative manner; and display leadership, business administration, and entrepreneurial abilities.
6	Analyze data from the intended tests to manage resources creatively.
7	Design a system, component, and process to meet recent technological advancements using computer systems in chemical engineering.
8	Consider the impact of chemical process industries on society, economics, and the environment using fundamental knowledge of chemical process industries.
9	Demonstrate current technical expertise by addressing process dynamic and control challenges in plant operations.

Apply research findings in chemical reactions to exhibit their properties 10 in order to assess the results and draw conclusions about industrial operations.

5. Competencies of Engineering Graduate

The Engineering Graduate must be able to:

A1. Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.

- al. Describe the relevant mathematical principles and theories in the discipline.
- a2. Explain the scientific principles and theories that apply to the topic.
- a3. Explain the basic principles of engineering.
- b1. Use math ideas and theories that are applicable to the field.
- b2. Use scientific concepts and theories that are relevant to the profession.
- b3. Apply engineering basics that are relevant to the subject.
- c1. Identify complex engineering problems by -applying the concepts and the theories of mathematics
- c2. Formulate complex engineering problems by applying the concepts and the theories of sciences, appropriate to the discipline.
- c3. Solve complex engineering problems by applying engineering fundamentals.
- A2. Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.
- a1. Define organic reactions' principles, basic characteristics, and properties, as well as their applications in chemical process industries like refining, petroleum petrochemicals, natural processing, gas electrochemistry, fertilizers, and ceramics, etc.

- a2. Define the principles, basic properties, and features of inorganic reactions, as well as their use in chemical process industries such as petroleum refining, natural gas processing, petrochemicals, electrochemistry, fertilizers, and ceramics, etc.
- b1. Conduct basic experiments to learn about the basic characteristics and features of organic reactions, for applying in chemical process industries such as petroleum refining, natural gas processing, petrochemicals, electrochemistry, fertilizers, and ceramics, among others.
- b2. Conduct basic experiments to learn about the basic properties and features of inorganic reactions, for applying in chemical process industries such as petroleum refining, natural gas processing, petrochemicals, electrochemistry, fertilizers, and ceramics, etc.
- b3. Analyze data to interpret it
- b4. Evaluate components, systems, and processes are evaluated for their characteristics and performance.
- c1. Choose relevant mathematical and computer-based methodologies for problem modeling and analysis.
- c2. Develop suitable experimentation and/or simulation.
- c3. Apply statistical analyses and objective engineering judgment to draw conclusions.
- A3. Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.
- a1. Learn the general principles of design techniques specific to particular products and processes including reactor and vessel design.
- a2. Understand the professional ethics and impacts of engineering solutions on society and environment

- a3. Recognizes the environmental and economic impact of various industries, waste minimization, and industrial facility remediation.
- b1. Judge engineering decisions considering balanced costs, benefits, safety, quality, reliability, and environmental impact.
- c1. Incorporate economic, societal, global, environmental, and risk management factors into design.
- c2. Apply engineering design procedures to generate cost-effective solutions while adhering to the principles and contexts of sustainable design and development.

A4. Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.

- a1. Describe quality assurance systems, codes of practice, and standards, as well as health and safety regulations and environmental concerns.
- a2. List the engineering-related business and management principles.
- a3. Define contemporary engineering technologies and their applications in relation to disciplines.
- b1. Create methodical approaches when dealing with new and advancing technology.
- c1. Apply safe systems at work by taking the necessary precautions to manage hazards.
- c2. Use fundamental organizational and project management abilities.
- c3. Utilize modern technologies.
- c4. Apply quality assurance procedures and follow codes and standards.

A5. Practice research techniques and methods of investigation as an inherent part of learning.

- a1. Define technical language and report writing.
- b1. Assess different ideas, views, and knowledge from a range of sources.
- c1. Prepare technical reports
- d1. Search for information to engage in lifelong self-learning discipline.

A6. Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.

- a1. Show the conventional procedures of chemical analysis and characterization of common engineering materials and components.
- b1. Interpret data derived from laboratory observation from equipment flow sheets, charts and curves to interpret data derived from laboratory observation.
- c1. Conduct troubleshooting in chemical engineering plants.
- c2. Acquire entrepreneurial skills.

A7. Function efficiently as an individual and as a member of multidisciplinary and multicultural teams.

- d1. Collaborate effectively within multidisciplinary team.
- d2. Work in stressful environment and within constraints.
- d3. Motivate individuals.

A8. Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.

- d1. Communicate effectively.
- d2. Demonstrate efficient IT capabilities.
- A9. Use creative, innovative and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.
- d1. Think creatively in solving problems of design.

- d2. Manage effectively for tasks, time and resources.
- d3. Refer to relevant literatures.

A10. Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.

- d1. Search for information to engage in lifelong self-learning discipline.
- d2. Merge the engineering knowledge, understanding, and feedback to improve design, products and/or services.

In addition to the competencies for all engineering programs the basic chemical:

Engineering graduate and similar programs must be able to:

- B1. Design a practical chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including: Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design.
- a1. Recognize the principles of chemical engineering including chemical reaction equilibrium and thermodynamics; mass and energy balance; transport processes; separation processes, mechanical unit operations and process control.
- b1. Summarize the appropriate techniques relevant to different industries.
- c1. Create a process, component or system to carry out specialized engineering designs.
- B2. Engage in the recent technological changes and emerging fields relevant to chemical engineering to respond to the challenging role and responsibilities of a professional chemical engineer

d1 Engage in the recent technological changes and emerging fields relevant to chemical engineering to respond to the challenging role and responsibilities of a professional chemical engineer

B3. Apply numerical modeling methods and/or computational techniques appropriate to chemical engineering.

d1. Apply numerical modeling methods and/or computational techniques appropriate to chemical engineering.

B4. Adopt suitable national and international standards and codes to: design, operate, inspect and maintain chemical engineering systems.

d1. Adopt suitable national and international standards and codes to: design, operate, inspect and maintain chemical engineering systems.

6. Academic standards

The program adopts the National Academic reference standards of chemical engineering program (NARS18) which is approved by the national authority for quality assurance and accreditation of education NAQAAE.

7. Reference standards

External references for standards (Benchmarks)

- 1. ABET Engineering Criteria 2000.
- 2. Cleveland State University, Dept. of Chemical Engineering.
- 3. University of Michigan, Chemical Engineering Dept.

8. Program Curriculum Structure and Contents

8.1 Program duration:

The program duration is five years.

8.2 Program structure:

• **Total hours of the program:** 269 contact hours

• **Theoretical:**139 contact hours

• **Practical/Exercises**: 122 contact hours

• Compulsory:245

• Elective: 24

Article (166) Study in a two-semester system for a period of five years, with the provision of some elective courses, to develop in the student the ability to think and read externally, and to help in linking the various scientific courses he studies, as well as mastering methods of research, use of the library, selfstudy, and the field:

The first semester: (Autumn): starts from the third Saturday of September and lasts 15 weeks. The second semester (spring): starts from the second Saturday of February and lasts 15 weeks. Arabic and English are the languages of instruction at the institute, and the exam is taken in the language in which the course is taught.

Article (167) The transfer exams and the final group exam are held at the end of each semester in the courses that the student studied in his group and in the courses that are left behind and imposed on him by lower groups in accordance with schedules of courses mentioned in these regulations.

Article (168): Final year students prepare a bachelor's project, and the relevant department councils determine its topic and allocate an additional four-week period for its implementation after the written exam. The Institute Council decides, based on the proposal of the department councils, how to divide students into groups during the course Implementing projects and how to supervise and discuss them in oral exam sessions and rewards finance for participants in project implementation.

Article (169) The student's success in the academic courses and in the general assessment is estimated by one of the following estimates:

Excellent, 85% or more of the total score

Very good, from 75% to less than 85% of the total score

Good: from 65% to less than 75% of the total score

Acceptable from 50% to less than 65% of the total score

The student is considered to have failed with one of the following two grades in the following cases.

Weak: from 30% to less than 50% of the total score

Very weak: less than 30% of the total score

Written failure: The student is considered to have written failure in the course if he obtains less than 40 the grade assigned to the written exam for that course Article (170)

A - The student is considered successful if he succeeds in all the courses he is assigned to study in his group or if any group is left behind minimum.

B - The student is transferred from the group in which he is enrolled to the next group if he fails or is absent with an acceptable excuse in no more than two courses from his group or from the courses of a lower group, and success in all courses is required before obtaining a bachelor's degree.

C - In addition to the two courses referred to in the previous paragraph, the student who fails a third additional course in humanities is allowed to transfer to the next group.

D – The student takes the exam in the courses he failed with the students of the group in which these courses are taught, or at another date determined by the Institute Council. In this case, their success is considered an acceptable grade. The grades the students obtain will be reduced to the maximum acceptable grade if their grades exceed that.

The grade for the backwardness course exam is calculated on the basis of the written exam grade that the student obtains in addition to the grade for the oral practical test (if any, after assigning it to the high end of the total grades for the course. This text applies to the second round exam (September round for final teams).

Article (171) It shall be held A second round examination in September of each year for final year students who fail no more than two of the courses of this band or lower courses, in addition to a third additional course in the

humanities, if any, with the exception of the bachelor's project, in which the student who fails it becomes left to repeat.

Article (172): The student's work is evaluated continuously during the semester in addition to the end-of-semester exam, and the semester's work represents part of the final grade and is represented in periodic exams, theoretical and practical exercises, research, and regularity. In order for the student to be considered successful, he must obtain at least 50% in his total grades in the course. He must obtain at least 40% of the grades in the final written exam, even if his total grades in the course are higher than the minimum passing threshold.

Article (173): A student enrolled in one of the institute's departments may transfer his enrollment to another department after paying the transfer fees in accordance with the ministerial decision issued regarding the transfer rules, provided that the admission conditions for the transferred department are met. To him as long as he does not achieve 50% of the institute's study requirements.

Article (174): The student who fails more than two academic courses and a third additional course in the humanities is required to repeat the academic year studying and taking an exam in the failing subjects only, and he must continue studying, oral and practical exams, and an exam at the end of the year or the end of the semester with his study group.

Article (175): The final grade for students for the bachelor's degree is calculated on the basis of the total grades for all academic years (from preparatory to the fourth year, and the total obtained by the student is attributed to the total cumulative total for these years). The student receives the following grades according to the grades he obtained:

Excellent general grade for the student who obtains 85% or more of the cumulative total.

Very good general grade for the student who obtains 75% to less than 85% of the cumulative total.

Good general grade for the student who obtains 65% to less than 75% of the cumulative total. General grade.

It is accepted for a student who obtains 50% to less than 65% of the cumulative total.

The student is granted honors if he obtains a general grade of at least very good in all years of study except the preparatory year, with no previous failure in any of the academic subjects in all year groups.

Article (176): The Institute sends to the competent department of the Ministry of Higher Education at least one month before the examination date, lists of three copies with the names of the students who are taking the examination, whether in the transfer examination or the final examination at the Institute - bachelor's degree. The competent department in the Ministry reviews the lists to ensure the validity of the students' registration in the institute and their eligibility. In taking the exam, students who have no right to take the exams are excluded. Then these lists are approved, a copy of them is kept by the administration, another copy is sent to the institute, and a third copy is delivered to the general president of the exam to work accordingly in the end-of-school year exam.

Article (177): The Ministry of Higher Education sends to the Ministry of Higher Education every semester the end-of-semester exam schedules for approval. It also sends the formation of exam committees for approval and lists of graders and examiners for accreditation also.

Article (178): The Institute issues temporary certificates for final-year graduates, which are signed by the Dean of the Institute and include: For the name/graduation course/grades of success in each course and the general grade. The competent examinations department in the ministry reviews and approves the graduates' certificates. The date of granting the degree (bachelor's) is determined from the date the Minister of Education approves the examination result.

Article (179): Transfer exams and final exams are subject to the regulations and rules decided by the Ministry of Higher Education for each private higher institute. The Institute's Board of Directors approves the results of the transfer exams, and the Ministry of Higher Education approves the results of the final exams. Students who successfully complete their studies at the Institute are granted a bachelor's degree, and these certificates are approved by the

Minister of Higher Education. The results of the transfer exams are announced after their approval by the Dean of the Institute, after review by the competent department of the Ministry. The Ministry of Higher Education is notified of a copy of this result. The results of the bachelor's exams are also announced after their approval by the Minister of Higher Education in separate lists for all those who passed their grades and those who failed, mentioning the courses for failure and failure, and the subjects in which they failed, arranged according to the alphabet of the names of the students in each grade. It is announced in a visible place in the institute and for sufficient time to view it.

Article (180) The Institute's Board of Directors may exempt the student from attending all or some of the academic courses and also exempt him from the transfer exams for them, except for the final band courses, if it is proven that he attended equivalent courses and successfully took equivalent exams in engineering colleges and engineering institutes. Debate only.

Article (181): A decision is issued annually by the Minister of Higher Education based on the proposal of the head of the education sector to appoint the head of the final examination year (bachelor's degree at the institute).

The Dean of the institute is considered the general president of the transfer exam, and the general president of the exam is fully responsible for organizing all work related to the exam.

The Dean of the Institute shall be the General Head of Examinations at the Institute, and the competent agent shall be his deputy, and the work committees for examinations shall be formed in accordance with the rules regulating that at the Institute, and this formation shall be approved by the head of the relevant sector. Under his supervision, one or more committees are formed to monitor the exam and prepare the results, each of which is headed by one of the professors or assistant professors.

Every semester, the end-of-semester examination schedules are sent to the Ministry of Higher Education for approval, as well as the formation of examination committees and lists of examiners and graders.

Article (182): The student will be dismissed from the institute if the student stops studying without a prior excuse for a period of two semesters or if he

stops studying for the same period despite the rejection of the excuse provided by the Institute's Board of Directors.

Article (183): A student may not remain in one year for more than two years. In addition to the above, the Institute's Board of Directors may grant students in the second year and beyond two additional opportunities at most to take the exam from abroad. If a student in the final year fails in no more than half of the courses in this year, regardless of the courses acquired from the previous year, he will be granted permission to take the exam until he passes.

Article (184): The student performs the field training approved by the Institute for a period of eight weeks in factories and institutions after completing the second semester exams at the third level. This training aims to link what the student studied at the Institute with practical applications as well as acquiring some skills in the field of specialization. The distribution of the training grade is as follows:

- 30% of the grand final is assigned by the institute supervisor.
- 30% is assigned by the training agency supervisor.
- 40% is assigned to discuss the report submitted by the student.

9. The Reference Frames Determinants for Bachelor Stage

A. Humanities and Social Sciences

Code	Course Name	Contact hour
BAS025	Int. to Engineering and Environment	2
BAS026	Technical English Language 1	4
BAS027	Human Rights	2
BAS114	Technical English Language 2	4
BAS122	Technical Report Writing	4
BAS214	Heritage of Egyptian Literature	2
BAS311	Environmental Management	3
BAS421	Research and Analytic Skills	2
Total		23

B. Business Administration

Code	Course Name	Contact hour
BAS213	Engineering Economy	3
BAS321	Project Management and Control	4
CHE423	Quality Assurance And Engineering Reliability	3
Total		10

C. Mathematics and Basic Sciences

Code	Course Name	Contact hour
BAS011	Mathematics 1	4
BAS012	Mechanics 1	4
BAS013	Physics 1	6
BAS014	Engineering Chemistry	4
BAS016	Int. to Computer Systems	4
BAS021	Mathematics 2	4
BAS022	Mechanics 2	4
BAS023	Physics 2	6
BAS111	Mathematics 3	4
BAS121	Mathematics 4	4
BAS211	Engineering Probability and Statistics	4
BAS221	Numerical Methods in Engineering	4
Total		52

D. Engineering Culture

Code	Course Name	Contact hour
BAS024	Production Engineering	5
BAS112	Electrical Engineering Fundamentals	5
CHE312	Operations Research	4
Total		14

E. Basic Engineering Sciences

Code	Course Name	Contact hour
BAS015	Engineering Drawing and Projection	5
BAS115	Computer programming	4

BAS113	Engineering Thermodynamics	5
BAS124	Strength of materials	4
BAS123	Introduction to information technology	4
BAS212	Fluid Mechanics	4
CHE111	Inorganic Chemistry	4
CHE121	Organic Chemistry	4
CHE122	Physical Chemistry	4
CHE211	Chemical Engineering Principles1	4
CHE212	Material science and metallurgy	4
CHE213	Principles of Engineering Design	4
CHE221	Chemical Engineering Principles 2	5
CHE222	Chemical Engineering	5
	Thermodynamics	3
CHE223	Analytical Chemistry	4
CHE224	Process Dynamics and Control	4
CHE225	Heat transfer	5
CHE 315	Electrochemistry	4
Total		77

F. Applied Engineering and Design

Code	Course Name	Contact hour
CHE311	Reactor Design	4
CHE313	Mass Transfer Operations I	4
CHE314	Biochemistry	4
CHE316	Elective 1	4
CHE317	Elective 2	4
CHE321	Mass Transfer Operations II	5
CHE322	Corrosion engineering	4
CHE323	Mechanical unit operations	5
CHE324	Process Modeling and Simulation	5
CHE325	Elective 3	4
CHE411	Computer Applications in Chem. Eng.	5

CHE412	Petrochemical Engineering	4
CHE413	Plant Design	5
CHE415	Elective 4	4
CHE416	Elective 5	4
CHE421	Industrial Technology in Chem. Eng.	4
CHE422	Petroleum Refining Engineering	4
CHE425	Elective 6	4
Total		77

G. Projects and Practice

Code	Course Name	Contact hour
CHE414	Project 1	5
CHE424	Project 2	6
Total		11

From the previous tables, the reference frames determinations can be summarized as follows:

No.	Department	Contact Hours	The program percentage%	Reference Frames' percentage %
A	Humanities and Social sciences	23	8.71	8-12
В	Business Administration	10	3.79	2-4
С	Mathematics and Basic Sciences	52	19.7	18-22
D	Engineering Culture	14	5.30	4-6
Е	Basic Engineering Sciences	77	29.17	25-30
F	Applied Engineering and Design	77	29.17	25-30
G	Projects and Practice	11	4.17	4-6
Total		264	250-280	

10. Contact Hours According to the Requirements

A. University Requirements

Code	Course Name	Contact hour
BAS016	Int. to Computer Systems	4
BAS025	Int. to Engineering and Environment	2
BAS026	Technical English Language 1	4
BAS027	Human Rights	2
BAS114	Technical English Language 2	4
BAS214	Heritage of Egyptian Literature	2
BAS421	Research and Analytic Skills	2
Total		20

B. Institute Requirements

Code	Course Name	Contact hour
BAS011	Mathematics 1	4
BAS012	Mechanics 1	4
BAS013	Physics 1	6
BAS014	Engineering Chemistry	4
BAS015	Engineering Drawing and Projection	5
BAS021	Mathematics 2	4
BAS022	Mechanics 2	4
BAS023	Physics 2	6
BAS024	Production Engineering	5
BAS111	Mathematics 3	4
BAS112	Electrical Engineering Fundamentals	5
BAS113	Engineering Thermodynamics	5
BAS121	Mathematics 4	4
BAS122	Technical Report Writing	4
BAS123	Int.to Information Technology	4

BAS211	Engineering Probability and Statistics	4
BAS221	Numerical Methods in Engineering	4
Total		76

C. General Department Requirements

Code	Course Name	Contact hour
BAS115	Computer programming	4
BAS124	Strength of materials	4
BAS212	Fluid Mechanics	4
BAS213	Engineering economy	3
BAS311	Environmental management	3
BAS321	Project management and control	4
CHE111	Inorganic Chemistry	4
CHE121	Organic Chemistry	4
CHE122	Physical Chemistry	4
CHE211	Chemical Engineering Principles1	4
CHE212	Material Science and Metallurgy	4
CHE213	Principles of Engineering Design	4
CHE221	Chemical Engineering Principles 2	5
CHE222	Chemical Engineering Thermodynamics	5
CHE223	Analytical Chemistry	4
CHE224	Process Dynamics and Control	4
CHE225	Heat transfer	5
CHE312	Operations Research	4
CHE314	Biochemistry	4
CHE315	Electrochemistry	4
CHE324	Process Modeling and Simulation	5
CHE411	Computer Applications in Chem. Eng.	5
CHE423	Quality Assurance And Engineering	3
	Reliability	3
Total		94

D. Specific Department Requirement

Code	Course Name	Contact hour
CHE311	Reactor Design	4
CHE313	Mass Transfer Operations I	4
CHE316	Elective 1	4
CHE321	Mass Transfer Operations II	5
CHE322	Corrosion engineering	4
CHE323	Mechanical unit operations	5
CHE324	Process Modeling and Simulation	5
CHE325	Elective 2	4
CHE412	Petrochemical Engineering	4
CHE413	Plant Design	5
CHE414	Project 1	5
CHE415	Elective 3	4
CHE416	Elective 4	4
CHE421	Industrial Technology in Chem. Eng.	4
CHE422	Petroleum Refining Engineering	4
CHE424	Project 2	6
CHE425	Elective 5	4
CHE426	Elective 6	4
Total		79

From the previous tables, the contact hours can be summarized as follow:

No.	Department	Contact Hours	The program percentage%	Reference Frames' percentage %
1	University Requirements	20	7.43	6-10
2	Institute Requirements	76	28.25	22-30
3	General Department Requirements	94	34.94	30-35

4	Specific Department Requirements	79	29.37	20-30
Total		269	(250-280)	

11. Curriculum Structure distribution

Level 0, Semester 1

		Hou	Hours per week					Degrees			
Code	Course Name	Lecture	Lab.	Exercise	Contact	Student's	Total	Periodic Exam	Practical\	Final	Total
BAS011	Mathematics 1	2	-	2	4	4	8	60	-	90	150
BAS012	Mechanics 1	2	-	2	4	4	8	40	-	60	100
BAS013	Physics 1	2	2	2	6	4	10	60	15	75	150
BAS014	Engineering Chemistry	2	2	-	4	4	8	40	10	75	125
BAS015	Engineering Drawing and Projection	1	4	-	5	4	9	50	-	75	125
BAS016	Int.to Computer Systems	2	2	-	4	4	8	40	10	50	100
Total		11	10	6	27	24	51				750

Level 0, Semester 2

Hours per week	Degrees

Code	Course Name	Lecture	Lab.	Exercise	Contact	Student's	Total	Periodic Exam	Practical\	Final	Total
BAS021	Mathematics 2	2	-	2	4	4	8	60	-	90	150
BAS022	Mechanics 2	2	-	2	4	4	8	40	-	60	100
BAS023	Physics 2	2	2	2	6	4	10	60	15	75	125
BAS024	Production Engineering	3	2	-	5	4	9	40	10	75	125
BAS025	Int. to Engineering and Environment	2	-	-	2	2	4	25	-	50	75
BAS026	Technical English Language 1	2	2	-	4	3	7	40	10	50	100
BAS027	Human Rights	2	-	-	2	2	4	20	-	30	50
Total		15	6	6	27	23	50				750

Level 1, Semester 1

		Hou	ırs p	er w	eek			Degr	ees		
Code	Course Name	Lecture	Lab.	Exercise	Contact	Student's	Total	Periodic Fyam	Practical\	Final	Total
BAS11	Mathematics 3	2	-	2	4	4	8	60	-	90	150
BAS11 2	Electrical Engineering	3	-	2	5	4	9	60	-	90	150

	Fundamental										
	s										
BAS11	Engineering										
3	Thermodyna	3	_	2	5	4	9	40	10	75	125
3	mics										
BAS11	Technical										
4	English	2	2	_	4	3	7	40	10	50	100
4	Language 2										
BAS11	Computer	2	2		4	4	8	40	10	50	100
5	programming	2	2	-	4	4	0	40	10	30	100
CHE11	Inorganic	2	2		4	5	9	40	10	75	125
1	Chemistry			-	4)	9	40	10	13	123
Total		14	6	6	26	24	50				750

Level 1, Semester 2

		Hou	rs pe	r wee	k			Degree	S		
Code	Course Name	Lecture	Lab.	Exercise	Contact	Student's load	Total	Periodic Exam	Practical\Oral	Final Exam	Total
BAS121	Mathematics 4	2	-	2	4	5	9	60	-	90	150
BAS122	Technical Report Writing	2	2	-	4	4	8	40	10	50	100
BAS123	Int.to Information Technology	2	-	2	4	4	8	40	10	50	100
BAS124	Strength of Materials	2	-	2	4	4	8	40	-	60	100

CHE121	Organic Chemistry	2	2	-	4	5	9	60	15	75	150
CHE122	Physical Chemistry	2	2	-	4	3	7	60	15	75	150
Total		12	6	6	24	25	49				750

Level 2, Semester 1

		Hou	ırs pe	r wee	k			Degree	S		
Code	Course Name	Lecture	Lab.	Exercise	Contact	Student's	Total	Periodic Exam	Practical\	Final	Total
BAS211	Engineering Probability and Statistics	2	-	2	4	4	8	40	-	60	100
BAS212	Fluid Mechanics	2	1	1	4	4	8	60	15	75	150
BAS213	Engineering Economy	2	-	1	3	3	6	40	-	60	100
BAS214	Heritage of Egyptian Literature	2	-	-	2	3	5	20	-	30	50
CHE211	Chemical Eng. Principles 1	2	-	2	4	5	9	60	-	90	150
CHE212	Material science and metallurgy	2	-	2	4	3	7	40	-	60	100
CHE213	Principles of Eng. Design	2	-	2	4	3	7	40	-	60	100
Total		14	1	10	25	25	50				750

Level 2, Semester 2

		Hours per week						Deg	rees		
Code	Course Name	Lecture	Lab.	Exercise	Contact	Student's	Total	Periodic	Practical\	Final	Total
BAS221	Numerical Methods in Engineering	2	-	2	4	4	8	40	-	60	10 0
CHE221	Chemical Eng. Principles2	3	-	2	5	5	10	60	-	90	15 0
CHE222	Chemical Engineering Thermodyna mics	2	1	2	5	4	9	40	10	75	12 5
CHE223	Analytical Chemistry	2	2	-	4	4	9	30	10	60	10 0
CHE224	Process Dynamics and Control	2	-	2	4	4	8	40	-	60	10
CHE225	Heat transfer	2	1	2	5	3	7	40	10	75	12 5
CHE226	Training 1*	-	-	-	-	-	-	30	-	20	50
Total		15	4	8	27	24	51				75 0

^{*} The student should make training in the summer following the 2nd semester for 4 weeks.

Level 3, Semester 1

		Hours per week						Degr	ees		
Code	Course Name	Lecture	Lab.	Exercise	Contact	Student's	Total	Periodic Exam	Practical\	Final	Total
BAS31	Environmenta 1 management	2	-	1	3	3	6	40	-	60	100
CHE3 11	Reactor Design	2	-	2	4	4	8	50	-	75	125
CHE3 12	Operations Research	2	-	2	4	4	8	40	-	60	100
CHE3 13	Mass Transfer Operations I	2	-	2	4	4	8	50	-	75	125
CHE3 14	Bio chemistry	2	-	2	4	4	8	40	-	60	100
CHE3 15	Electrochemis try	2	1	1	4	3	7	40	10	50	100
CHE3 16	Elective 1	2	-	2	4	3	7	50	-	50	100
Total		14	1	12	28	24	52				750

Level 3, Semester 2

		Hou	rs pe	r wee	ek			Degree	S		
Code	Course Name	Lecture	Lab.	Exercise	Contact	Student's	Total	Periodic Exam	Practical\0	Final Exam	Total

BAS321	Project Management and Control	2	-	2	4	4	8	40	-	60	100
CHE321	Mass Transfer Operations II	3	-	2	5	4	9	60	-	90	150
CHE322	Corrosion engineering	2	-	2	4	3	7	40	-	60	100
CHE323	Mechanical unit operations	3	-	2	5	4	9	60	-	90	150
CHE324	Process Modeling and Simulation	3	2	-	5	4	9	40	10	50	100
CHE325	Elective 2	2	-	2	4	4	8	50	-	50	100
CHE326	Training 2*	-	-	-	-	-	-	30	-	20	50
Total		15	2	10	27	23	50				750

^{*} The student should make training in the summer following the 2nd semester for 4 weeks.

Level 4, Semester 1

		Hou	ırs pe	er we	ek			Degr	ees		
Code	Course Name	Lecture	Lab.	Exercise	Contact	Student's	Total	Periodic Exam	Practical\	Final	Total
CHE41	Computer Application s in Chem. Eng.	3	2	-	5	4	9	40	10	50	100

CHE41 2	Petrochemic al Engineering	2	-	2	4	4	8	60	15	75	150
CHE41 3	Plant Design	3		2	5	4	9	60	-	90	150
CHE41 4	Project 1*	3	2	-	5	4	9	75	-	75	150
CHE41 5	Elective 3	2	_	2	4	4	8	50	ı	50	100
CHE41 6	Elective 4	2	-	2	4	4	8	50	-	50	100
Total		15	4	8	27	24	51				750

Level 4, Semester 2

		Hou	ırs j	per w	eek			Degree	S		
Code	Course Name	Lecture	Lab.	Exercise	Contact	Student's load	Total	Periodic Exam	Practical\Oral	Final Exam	Total
BAS42	Research and Analytical Skills	2	-	1	2	3	5	20	-	30	50
CHE42	Industrial Technology in Chem. Eng.	2	ı	2	4	4	8	50	15	60	125
CHE42 2	Petroleum Refining Engineering	2	-	2	4	3	7	50	-	75	125

CHE42 3	Quality Assurance and Engineering Reliability	2	-	1	3	3	6	50	-	50	100
CHE42 4	Project 2*	2	4	-	6	4	10	50	25	75	150
CHE42 5	Elective 5	2	-	2	4	3	7	50	-	50	100
CHE42 6	Elective 6		-	2	4	3	7	50	-	50	100
Total	14	4	9	27	23	50				750	

Continuous course; one oral examination for both CHE414 and CHE424 at the end of the second term.

12. Curriculum Structure and Contents

	A. Compulsory									
er				Hours per week						
Level	Semester	Cod e	Course Name	Lec.	Lab.	Exer.	Competencie s	Program LO'S		
		BAS	Mathematic	2		2	A1	o2 b2 o2		
		011	s 1	2	-	2	AI	a3,b3, c3		
		BAS	Mechanics 1	2	-	2	A1	o1 b1 o2		
		012					AI	a1, b1, a2		
		BAS	Physics 1	2	2	2	A1	a1 h1 a2		
		013						a1, b1, a2		
	× 1	BAS	Engineering	2	2	-	A1	a1, c2, c3		
0		014	Chemistry	2			A10	d2		
LEVEL 0	SEMESTER	BAS	Engineering	1	4	-	A1	o1 h1		
			drawing and					a1, b1,		
LE	SE	015	projection					a2, b2		

	A. Compulsory									
	er.			Hours	s per w	eek				
Level	Semester	Cod e	Course Name	Lec.	Lab.	Exer.	Competencie s	Program LO'S		
		BAS 016	Int. to computer	2	2	-	A4 A8	a3, c3 d1,d2		
		Total	systems	11	8	8		,		
		BAS 021	Mathematic s 2	2	-	2	A1 A5	c2,b3 b1, d1		
		BAS 022	Mechanics 2	2	-	2	A1	a1, b1, a2,,c1		
		BAS 023	Physics 2	2	2	2	A1	a1, b2, a2, a3		
		BAS 024 BAS 025	Production engineering	3	2	-	A1	a1,a3		
							A2	a1,b2		
							A4	a3		
				2	-	-	A3	a2, a3, b1, c1		
							A4	a1		
		0_0					A10	d1,d2		
			TD 1 1 1				B2	d1		
	SEMESTER 2	BAS 026	Technical English Language 1	2	2	-	A8	d1		
		BAS 027	Human Rights	2	-	-	A8	d1		
	SE	Total		15	6	6				
EL 1	ESTE	BAS	S Mathematic	2 -		2	A1	a1, c2, b1		
LEV	SEMESTE	111	s 3				A10	d1,d2		

	A. Compulsory									
	er			Hours	s per w	eek				
Level	Semester e Cod		Course Name	Lec.	Lab.	Exer.	Competencie s	Program LO'S		
		BAS 112	Electrical Engineering Fundamenta	3	-	2	A1	b3,c1,c2		
							A2	b1,b4		
		BAS 113	Engineering Thermodyn amics	3	-	2	A1	a1,a2, b1 , c2		
		BAS	Technical	2	2		A8	d1,d2		
		114	English Language 2	2	2	-	A10	d1,d2		
		BAS	Computer				A1	a1,c2,c3		
		115	programmin g	2	2	-	A8	d1,d2		
		CHE	Inorganic	2	2	_	A2	a2, b2, c2		
		111	Chemistry				A7	d2		
		Total		14	6	6				
		121 s BAS 1	Mathematic	2	_	2	A1	a1,b1		
			s 4				A3	a2,c2		
			Technical	2	2	-	A5	a1,b1, ,c1,d1		
			Report Writing	2			A8	d1		
	R 2	BAS	Int. to Information	2	_	2	A3	b1, c1, c2		
	STE	123	Technology				A4	a1, b1		
	SEMESTER	BAS 124	Strength of materials	2	-	2	A1	a1, b1, c2, c3		

	A. Compulsory									
	er			Hours per week						
Level	Level		Course Name	Lec.	Lab.	Exer.	Competencie s	Program LO'S		
							A2	a1,b1		
		CHE	Organic	2	2	_	A6	b1		
		121	Chemistry				A7	d1,d2,d3		
							B1	a1, b1, c1		
							A5	a1,c1,d1		
		CHE	Physical	2	2	_	A6	b1		
		122	Chemistry		_		A7	d1,d2,d3		
		TD 4 1		10			B1	a1,b1		
		Total		12	6	6				
		BAS 211	Engineering Probability	2	- 2	2	A1	a1, c2		
			and Statistics				A2	b1,b3		
		BAS 212	Fluid Mechanics	2 1	1	1	A1	a1, a2, b1, b2, b3		
			iviechanics				A2	a1, a2, b1		
		BAS 213	Engineering	2	-	1	A1	a3,b1		
			Economy				A3	b1,c1		
2	3R 1	BAS 214	Heritage of Egyptian Literature	2	-	-	A9	d3		
dLEVEL 2	SEMESTER	CHE 211	Chemical Eng. principles 1	2	-	2	A1	a1,b2,b3, c3		

	A. Compulsory							
	ır			Hours	s per w	eek		
Level	Semester	Cod e	Course Name	Lec.	Lab.	Exer.	Competencie s	Program LO'S
		CHE 212	Material science and	2	-	2	A10	d1,d2
			metallurgy				A2	b3
							A5	b1
		CHE	Principles of	2		2	A9	d1,d2
		213	Eng. Design	2	-	2	A10	d2
							B2	d1
		Total		14	1	10		
		BAS	Numerical Methods in	2	_	2	A2	b2,c1
		221	Engineering	_			A5	b1,d1
		CHE 221	Chemical Eng. Principles2	3	-	2	A1	a1, b2,b3,c2
			Chemical				A1	c3, b3
		CHE 222	Engineering Thermodyn amics	2	1	2	B1	a1, b1
							A10	d1
		CHE	Analytical				A1	B2, c2
	7	223	Chemistry	2	2	-	B3	d1
	ER	ER					A2	b3,c3
	ST						B2	d1
	SEMESTER	CHE 224		2	-	2	A2	c1

		Α.	Compulsory					
	ı			Hour	s per w	eek		
Level	Semester	Cod e	Course Name	Lec.	Lab.	Exer.	Competencie s	Program LO'S
			Process Dynamics				A6	b1
			and Control				В3	d1
							A1	b2
		CHE	Heat	2	1	2	A2	b3,c2
		225	transfer	2	1	2	A10	d1
							B1	a1
		СНЕ	Training 1 *	_	_	-	A5	a1,b1
							A7	d1, d2, d3
		226					A8	d1, d2
		TF ()		4 =		0	B1	b1, c1
		Total	· ·	15	4	8		
		BAS	Environmen tal	2	_	1	A3	a2, a3, b1, c1
		311	managemen	2	_	1	A4	a1, c1, c3
			t				A10	d1
		CHE	Reactor	2	_	2	A6	a1, b1, c1
		311	Design	2		2	B1	a1, c1
		CHE	Operations				A2	a1, b3
		CHE 312	Operations Research	2	-	2	A4	a2,c2, b1
							A6	b1, c2
	_	CHE	Mass				B1	a1, b1, c1
LEVEL 3	SEMESTER	Transfer Operations I	2	-	2	A7	d1	
VE	IES	CHE	Bio	2		2	A2	a1
LE	SE	314	chemistry	2	_	<u> </u>	A4	a3

		Α.	Compulsory					
				Hour	s per w	eek		
Level	Semester	Cod e	Course Name	Lec.	Lab.	Exer.	Competencie s	Program LO'S
							A5	b1,d1
							B1	a1, b1
		CHE	Electrochem				A10	d1,d2
		315		2	1	1	B2	d1
		313	istry				A2	b3,b4
							A3	a1,b1,c2
		CHE	Elective 1	2	_	2	A9	d1,d3
		316	Elective 1			2	B1	a1,b1,c1
							B2	d1
		Total		14	1	12		
		BAS 321	Project	2	-	2	A4	c1, c2
			Management				A6	c2,b1
		321					A1	a3,b3,c3
			Mass	3	-	2	A1	a2,b2,c2
		CHE	Transfer				A7	d1
		321	Operations				B1	a1,b1, c1
			II				B2	d1
		CHE	Corrosion	2	_	2	B2	d1
		322	engineering				B4	d1
			Mechanical				A3	a1, b1
	~	CHE 323	unit	3	_	2	A5	c1, d1
	×		operations	3			A9	d1,d3
	TE		-				B1	a1, b1, c1
	ES	CHE	Process				A2	a2, b3
	SEMESTER 2	324	Modeling and	3	2	-	В3	d1

	A. Compulsory							
	ır			Hour	s per w	eek		
Level	Semester	Cod e	Course Name	Lec.	Lab.	Exer.	Competencie s	Program LO'S
			Simulation					
		CHE	Elective 2	2	-	2	B2	d1
		325					B4	d1
		CHE	Training 2*				A5	c1, d1
		326	Training 2*	-	-	-	A10 B2	d1, d2
		Total		14	2	10	DZ	d1
		СНЕ	Computer Application	3	2	-	B1	c1
		411	s in Chem. Eng.				В3	d1
		CHE 412	Petrochemic al Engineering	2	-	2	B2	d1
							A3	a1,b1,c1
		CHE					A9	d1
		413	Plant Design	3	-	2	B1	a1, b1, c1
		713					B3	d1
							B4	d1
		CLIE					A2	c1, c2, c3
		CHE	Project 1*	3	2	_	A3	c1, c2
		414	J				A5	c1, d1
	1	~~~					A6	b1, c1, c2
	R 1	CHE	Elective 3	2	_	2	B2	d1
4	I E	415					B4	d1
EL	ES	CHE	Elective 4	2	_	2	A4	a1,c1,c3
LEVEL 4	SEMESTER	416					B1	b1,c1
	SI	Total		15	2	10		

	A. Compulsory								
	ï			Hour	s per w	eek			
Level	Semester	Cod e	Course Name	Lec.	Lab.	Exer.	Competencie s	Program LO'S	
		BAS 421	Research and Analytical skills	2	-	-	A2	b3,c3	
		CHE 421	Industrial Technology in Chem. Eng.	2	-	2	A3 B1	a2, a3, b1, c1 a1, b1, c1	
		CHE 422	Petroleum Refining Engineering	2	-	2	A10 B2	d1, d2	
		CHE 423	Quality Assurance and Engineering	2	-	1	A4 A6	a1, a2, b1, c2, c4	
		CHE 424	Reliability Project 2*	2	4	-	A7 A8 A9 B3 B4	d1, d2, d3 d1, d2 d1, d2, d3 d1 d1	
	2	CHE 425	Elective 5	2	-	2	A3 A10	a2,c1 d1,d2	
	SEMESTER	CHE 426	Elective 6	2	-	2	A3 A10 B2 B4	a2, c1 d1,d2 d1 d1	
	SE	Total		14	4	9			

13. Elective Courses

The students should choose one course from each of the following tables:

	Code	Course name		
	CHE316A	Liquefied Natural Gas		
	CHE316B	Gas Sweetening		
	CHE316C	Gas engineering		
Elective 1	CHE316D	Introduction to combustion phenomena		
ecti	CHE316E	Air Pollution		
E	CHE316F	Engineering Materials Selection		
	CHE325A	Foams industry		
	CHE325B	Ceramics industry		
61	CHE325C	Polymer engineering		
Elective 2	CHE325D	Food processing technology		
8	CHE415A	Electroplating		
Elective 3	CHE415B	Synthetic fibers		

	CHE415C	Paints technology	
	CHE415D	Renewable Energy Sources	
	CHE416A	Water desalination	
ive 4	CHE416B	Wastewater Treatment	
Elective 4	CHE416C	Rubber industry	
	CHE425A	Industrial safety	
	CHE425B	Special topics in chemical engineering	
ive 5	CHE425C	Plasticizers	
Elective 5	CHE425D	Fertilizers technology	
	CHE426A	Pulp and Paper industry	
	CHE426B	Polymer processing	
ive 6	CHE426C	Refractories	
Elective 6	CHE426D	Printing technology	

14. Methods and rules for student evaluation

Method (tool)	LO's		
1- Written exam	To assess knowledge and understanding intellectual		
1- Willen exam	skills: A,B		
2-Quizzes and	To assess knowledge and understanding & general		
reports	and transferable skills: a, d		
3- Oral exams	To assess knowledge and understanding, intellectual,		
5-Oral exams	general and transferable skill: a, b, d		
4- Practical	To assess knowledge and understanding,		
4-Fractical	professional, general and transferable skill: a, c, d		
5-Project applied on	To assess knowledge and understanding skills,		
a practical field	intellectual skills, professional skills, general and		
problem	transferable skill: a, b, C, D		

15. Program Evaluation

Evaluator	Tools	Sample evidence	
1-Senior students	Questionnaires	15% of the students	
2- Alumni	Questionnaires		
3- Stakeholders	 Questionnaires 	Samples representative from all sectors	
4-External evaluator	Review reports		

16.Matrix between Teaching and Learning Methods and Learning Outcomes

Teaching and	a	b	c	d
learning methods	Knowledge and	Mental	Practical and	General
	understanding	skills	professional	skills
			skills	
Face- to- Face lecture				

Site visits		
Self-learning		
Writing the		
article/report		
Discussion		
Problem solving		
Case Study		
Individual projects		
lab		
Brain storming		
Group projects		
cooperative research	•	
Online lecture		
Flipped classroom		

17. Chemical Engineering Courses

Level: 0 Semester: 1

BAS011	Mathematics 1	Contact4 Hours
Content	Algebra: vectors algebra - partial fractions - equal vectors -mathematical deduction - numerical solut (simple repetitive method - Newton and modification - intersection method - False position method - False position method - repetition method -	tions methods fied Newton's

	linear equations systems - Gauss Jordan method for deletion.						
	Derivation : function (definition - theories) - basic trigonometric						
	functions						
	and its inverse - exponential and logarithmic functions -						
	hyperbolic functions and its inverse - connection (definition -						
	theories) - limits (definition - theories)- derivatives (definition -						
	theories - higher order types) - curves drawing -mathematical and						
	engineering derivat	tive application	s - uno	defined for	mulas - Taylor		
	expansion - MacLean expansion - approximation - introduction						
	in partial derivation.						
Locturo	2 hours/week	Laboratory		Tutorial	2hours		
Lecture	Z Hours/ week	Laboratory	_	1 utoriai	/week		

BAS012	Mechanics 1	Contact4 Hours			
Content	Applications of space vectors – results of group of Forces - momentums - equivalent couples – equivalent groups - equations of equilibrium for rigid bodies - Supports and pivots types - equilibrium under the effect of forces and the space couples - center of mass (groups of particles - flat surfaces) – moment of inertia (mean axes- equal surfaces).				
Lecture	2 hours / week Laboratory - Tutoria	l 2hours / week.			
BAS013	Physics 1	Contact6 Hours			
Content	Material properties – Physical quantities – Standard units and dimensions –frequency motion, mechanical properties for materials –fluid properties – viscosity – surface tension–sound waves – waves in elastic media - Heat and thermodynamics: heat transfer – Gas motion theory – First law of thermodynamics – entropy and second law of thermodynamics – temperature measurements and thermometers.				

Lootuno	2 hours	Laboratory	2 hours /	Tutorial	2hours	
Lecture	/week	Laboratory	week	Tutoriai	/week	ı

BAS014	Engineering Chemistry				ntact4	
DASU14	Engineering Chemistry			Ho	urs	
	Gaseous stat	tus - substanti	al and heat b	alance in f	uel burning	
	operations a	nd chemical o	perations - pr	roperties of	f solutions -	
	dynamic bala	ance in physic	al and chemi	cal operation	ons - kinetic	
Comtom	chemical interactions - electric chemistry -introduction to					
Content	chemical corrosion - water processing - building materials -					
	pollution and its treatment Selected chemical industries:					
	chemical manures - dyes - polymers - sugar -petrochemicals					
	semiconductors - oil, greases and industrial detergents.				gents.	
Lecture	2 hours /	Laboratory	2 hours /	Tutorial	- Hours /	
Lecture	week	Laboratory	week	Tutorial	week.	

BAS015	Engineering drawing and projection	Contact5
DASUIS		Hours
Content	Techniques and skills of engineering drawing – e operations – orthogonal projection – secondary or solid bodies – intersections (cutters for solid intersections of surfaces) - personals – projections bodies – rules of writing dimensions – drawing of pe – deduction of missing projections – drawing of e sections. Drawing of the steel frames - binding and fixing de assembled drawing for some mechanical steel controduction to AutoCAD Fundamentals of e drafting by way of computer aided drawing (CAD). Basic features and capabilities of CAD software are fundamentals including orthographic project	thogonal – bodies – s of simple erspectives engineering evices - the omponents engineering) software. end drafting

	isometric pi	ictorials,	part	din	nensioni	ng	in :	2 dim	ensional
	drawings.								
Lecture	1 hours /	Labora	tory	4	hours	/	Tut	orial	
Lecture	week	Labura	tor y	wee	ek		Tut	Ullai	-

BAS016	Introductions to Computer Systems	Contact4 Hours
Content	Computer architecture – computer systems – files computer networks – internet networks – Databa and information technology – Computer general multimedia systems – methods of solving problem design for the programs and matrices – apple programming using one structured or visual lausing this language in solving the engineering pro-	se systems graphics – ns – logical ications in anguages –
Lecture	2 hours / Laboratory 2 hours / Tut	orial -

Level 0, Semester 2

DAS021	Mathematics 2	Contact4
DASU21	Wathematics 2	Hours

	Analytical geometry: equations of second degree and double						
	equation for two straight lines – movement and rotation of axes –						
	groups of unified axes circles - conical sectors (properties of						
	conical sectors - parabola - ellipse - hyperbola) - analytical						
	geometry in space – Cartesian coordinates – cylindrical – spherical						
Content	– plane in space – equations of surfaces in second order – rotation						
Content	and movement of axes in space						
	Integration: indefinite integration (basic functions – theories) –						
	method of integration (direct - indirect) - definite integration						
	(definition – properties -theories) – applications of definite						
	integration (plain areas – circular volumes – plain technical						
	length) – areas – circular surfaces – numerical integration.						
Lecture	2 hours / week Laboratory - Tutorial 2hours / week.						

BAS022	Mechanics 2	4Contact Hours
Content	Position, displacement, velocity, and acceleration plane motion path of particle – description of Cartesian axes – projectiles - tied motion for path – motion in fixed axes -motion in position between particles - tied motion for particles – principle of work and energy of motion conservation of mechanical energy – principle momentum of rigid body.	Pplane motion using reparticle in straight plan axes — relative rticle in circular path ption— principle of
Lecture	2 hours / week Laboratory - Tutorial	2hours /week.

D A CO22	Dhyging 2	Contact6
BAS023	Physics 2	Hours

	Electricity a	and magnetism	i: charge ar	nd substanc	ce- electric		
	field- colum	field- column's law- electric flux- Gauss law- electric volt-					
	condenser a	and insulation	materials-cu	irrent, resi	stance and		
	electric force	ce – ohm's la	w and simp	le circuits-	- magnetic		
	field- Babot	and Savart lav	vs – magneti	c flux and	gauss law-		
	Faraday law - Magnetic impedance						
Content	Topics: engineering light – light properties for spherical						
	surfaces – lenses and mirrors – wave properties for light and						
	Hygen's p	rinciple - in	terference	- polariza	tion- and		
	diffraction -						
	Nuclear physics: nuclear construction – Bohar theorem –						
	principle of quantum theory- laser - optical - electr						
	phenomenon.						
T /	2 hours /	T 1	2 hours /	TD 4	2hours /		
Lecture	week	Laboratory	week	Tutorial	week.		

BAS024	Production Engineering	Contact5
DASU24		Hours
Content	The engineering substances and its properties cooling diagrams – heating equilibrium diagracasting operation (sand casting and the prepared mold) – forming processes (cold and hot form rolling – wire drawing – blanking and pied drawing - the extrusion) – processes of metal (the riveting – welding with its types sticking processes (cutting elements – processes – hand automatic cutting machining: lathing - shaping milling – grinding – work piece fixation – fixation – specifications of the operating measuring tools (venire caliper – micrometers)	- heating and ams - alloys - aration of the aing: forging - ercing - deep al connections ng) - cutting d machining - eg - drilling - cutting tools machine) - and its types)
	 engineering specifications – production cycle 	e – production

	efficiency - different work	industrial safet cshops.	y – practical	training in	the
Lecture	3 hours / week	Laboratory	2 hours / week	Tutorial	1

BAS025	Introductions to Engineering and Environment	6 Contact
		Hours
Content	Engineering concepts: What is engineering – in classification for the engineering jobs – relation engineering development and environment economic development – engineering branches – ethics of the eigobs? Introduction to environmental science: the important science – modern technologistic effect on the environment – quality of the environmental pollution – sources of environmental pollution – noise) – economics of environmental pollution – legislations for the environment protection.	and social engineering cortance of egy and its nment and ellution and olid wastes
Lecture	2 hours / week Laboratory - Tutorial	-

BAS026	Technical English Language 1	6 Contact					
DASU2U	Technical English Language 1	Hours					
	Intensive guided practice in reading and analyz	Intensive guided practice in reading and analyzing expository and					
	argumentative prose and in writing and revising essays that						
Content	demonstrate coherent logical development, as	n ability to employ					
	effective strategies of argument and persuasion, and a command						
	of written English appropriate for college-level work						
Lecture	2 hours / week Laboratory - Tutorial	1 hour / week					

		2
BAS027	Human rights	Contact
		Hours
	حقوق الإنسان والنشأة التاريخية لتلك الحقوق والمدارس الفقهية لتأصيل	, -
	أحكام الاتفاقيات الدولية الخاصة بحقوق الإنسان، والمنظمات الدولية	
	يية القائمة على حماية تلك الحقوق، وموقف الدستور المصري من حقوق	العالمية والإقليه
	اية القانونية لها على الصعيد الوطني والصعيد الدولي، بالإضافة إلى	الإنسان، والحم
Content	في الشريعة الإسلامية. الأصول التاريخية الفلسفية لحقوق الإنسان	حقوق الإنسان
	ة لحقوق الإنسان العالمية والإقليمية -المصادر الوطنية – لحقوق الإنسان	المصادر الدولي
	بة القائمة على حماية حقوق لإنسان) أجهزة الأمم المتحدة (الحماية -	الأجهزة العالمب
	ل الإنسان حقوق الإنسان في الشريعة الإسلامية عرض لبعض طوائف	الوطنية. لحقوق
		حقوق الإنسان.

Level 1, Semester 1

BAS111	Mathematics 3 (4	4 Contact)
BAS111 Content	Partial differentiation applications: maximum minimum values in more than one variable — canalysis - the directional differential effects - integrations and its applications (the curved orthogonal axis) — Gauss- Stokes theory - the end and function expansion — basic concepts for the contact and divergence	mum and directional the multi I and the dless series onvergence order (the exact and the second divariable differential
	solution of differential equations.	
Lecture	2 hours / week Laboratory - Tutorial 2ho	ours / week.

BAS112	Electrical Engineering Fundamentals (5 Contact							
	ric circuits-	Delta and Star						
	connections -	Sine A.C an	d D.	C circuits -	Time vectors			
Cantant	diagram- Elec	tric power and	pow	er factor in A	A.C circuits - 3-			
Content	Phase curren	t - Electric	macl	nines - D.C	C machines –			
	Transformers	- Induction	and	synchronou	s machines -			
	Fractional power machines.							
Lastuna	3 hours /	Laboratory		Tutorial	2hours /			
Lecture	week	Laboratory	_	1 utoriai	week.			

BAS113	En	ngineering Ther	modynamics	(4 Contact)					
	Fundamental concepts - Properties of a pure substance -								
	Equation of star	te - thermodynai	mic systems -	Work and heat					
	- First law of th	nermodynamics;	Applications t	o Systems and					
Contont	Control Volum	mes - Second	Law of The	ermodynamics;					
Content	Principle of Ca	arnot cycles; Hea	at engines, Re	frigerators and					
	heat pumps -	Principle of	the increase	of entropy -					
	Applications to	systems and cor	ntrol volumes -	Irreversibility					
	and availability - Power and refrigeration cycles.								
Lecture	2 hours /	Laboratory	Tutorial	2hours/					
Lecture	week	Laboratory	- Tutorial	week.					

BAS026	Technical English Language 2	(3 Contact)
Content	Introduction to academic research and writing throusinvestigation of an issue or topic specified by the Students will be required to develop and organized research project related to the topic of the condemonstrate the information literacy skills required evaluate, and make appropriate use of primary a materials relevant to their project.	the instructor. to a substantial ourse and to mired to find,

Lecture	1 week	hours / ek	Labo	oratory	2hour	rs / week.	Tutor	ial		-
BAS	115		Com	puter P	rogran	ımin	g		(4 Con	tact)
Cont	ent	develop with on repetition registers return. (inheritant program	ing the program on the program of th	e progragrammir ranching inters - pts of old messible language applets	ams chang lang - matroconnect Connect	arts - ruage rix - eted 1 riento assing ts syr nic Us	g: problem - structure - form of processes ists - self ed program g, fundam ntax - majo ser Interface nguage.	ed p f the and rep mmi nent	rogramme programme programme function etition als of lass libr	ming am - ons - - the asses, Java raries
Lect	ure		nours week	Labor	atory	2	hours / week.	Tı	ıtorial	-

CHE111	Inorganic Chemistry (4 Contact)							
	Comparative study for the following groups of materials wi							
	focusing on the compounds which are important to the industry							
Content	nt " Haogyns – sulpher group – alcalines – earth alcalynes							
	familiar ite	ms of the fourth an	d fifth group	s in the periodic	c table			
	- transient metals – selected topics in the inorganic chemistry.							
Locturo	2 hours /	Laboratory	2hours /	Tutorial				
Lecture	week	Laboratory	week.	1 utoriai	-			

Level 1, Semester 2

BAS121	Mathematics 4 (4 Contact)
	Special functions – Fourier series - periodic functions and
Contont	Euler's laws - Fourier's integrations - solutions of the
Content	differential equations by series - solving the partial
	differential equations using variables separation. Functions

	with complex	variables – c	omplex quant	ities algebra–				
	multiple value	multiple values functions - the analytical functions and						
	Koshi's theorei	Koshi's theorem - the complex series - Taylor and Lorant						
	series - the zeros, unique points and the rest - the infinite							
	series.							
Locture	2 hours / wools	Lahamatany	- Tutorial	2hours				
Lecture	2 hours / week	Laboratory	- Tutoriai	/week.				

BAS122		Technical Report Writing (4 Contact)							
	Writing the scientific reports by English language: The principles								
	of report	preparation - types	of report	s-formatting	the reports –				
	skills of f	figures and shapes	– importi	ng text – cha	rt drawings –				
Contont	optical sc	optical scanning for the pictures and documents – the border and							
Content	notes ope	notes operations in the reports. Saving and indexing the reports							
	– searchi	ng for text - copin	ng and saf	fety of inform	ation – using				
	the diffe	the different computer programs packages for writing and							
	demonstrating the reports.								
Locture	1 hours	Laboratory	2 hours	Tutorial					
Lecture	/ week	Laboratory	/ week.	1 utoriai	-				

Lecture	2 hours / week	Laboratory	ı	Tutorial	2hours / week.
	week				

BAS124		Strength of Materials (4 Contact)						
Content	Simple states of stress and strain - Torsion stresses - Bending and shearing stresses in beams - Compound stresses - Analysis of plane stress - Combined stresses - Analysis of thin-walled pressure vessels - Deflection of beams.							
Lecture	2 hours / week	Laboratory	-	Tutorial	2 hours / week.			

CHE121	Organic Chemistry (5 Contact)								
	Modern presentation of organic chemistry stressing theory and								
	mechanism - extensive use of resonance and conformational								
	analysis; alkanes, cycloalkanes, alkyl halides, alcohols, ethers,								
	alkenes, alkynes, and stereochemistry - Speci	troscopy, aromatic							
	compounds, aldehydes and ketones, carboxylic acids and their derivatives, amines, and poly functional compounds.								
Content	Organic amines – carbohydrates – general study on the aromatic and organic compounds specially Benzene, naftaline and								
	antherasine- study for the hydration, oxidati	on, halognination,							
	nitration and carbonation and some other	operations for the							
	organic compounds. Preparation of the azo and diazo compounds and its importance – alchohols and aldyhides,								
	caitonates and the aromatic acids.								
-	3 hours / 2hours /								
Lecture	week Laboratory week	Tutorial -							

CHE122		Physical Chemistry (4 Contact)								
	Gases; the gas laws- ideal gas equations- kinetic molecular									
	theory- re	eal gases.	Solution	ns; units of	concentration	n- colligative				
	properties	s- Raoult'	s law-	colloidal m	atter. Chem	ical kinetics;				
	rate of reaction- order of reaction- collision theory-reaction mechanism- catalysts. Chemical equilibrium; equilibrium state-									
Content										
Content	factors a	affecting	chemica	ium- Chemi	ical reaction					
	equilibriu	ım		for	h	nomogeneous				
	and heter	and heterogeneous reactions. Ionic equilibrium, ionic product of								
	water- pH- pOH ionization of weak acids and bases- salt ef									
	common ion effect- buffer solution hydrolysis.									
Lecture	2 hours	Labo	notony	2hours /	Tutorial					
Lecture	/ week	Labo	ratory	week.	Tutoriai	-				

Level 2, Semester 1

BAS211	Engir	neering l	Probability a	nd	Statistics	(4 Contact)
Contont	l	•				s probability otive Statistics
Content	Sampling distributions. Estimation and confidence intervals. Hypothesis testing. Simple regression.					
Lecture	2 hours / week		Laboratory	•	Tutorial	2hours / week.

BAS212		Fluid Mechanics	(4 Contact)
	Fluid properties, fluid static	es, kinematics, fluid	l dynamics
Content	including energy and mon	nentum equations,	dimensional
	analysis, laminar flow, turbuler	nt flow and its applicat	tions, forces

	on immerse	ed bodies,	intro	duction	to	compres	sible	flow,
	applications to filtration and fluidization.							
	Laboratory	Laboratory course in Fluid Mechanics includes experiments on						
	venture-met	venture-meter, friction losses in pipes, center of pressure, flow						
	measuring apparatus, multi-pump test (Pump characteristics) and							
	losses in piping systems.							
Lecture	2 hours /	Labore	otowy	1 hou	r/	Tutorial		1
Lecture	week	Labora	Laboratory		k.	Tutoriai	hour	/week.

BAS213	Engineering Economy (4 Contact)							
Content	This course covers the basic concepts of engineering economics as applied to the evaluation of capital investment alternatives in both the private and public sectors of our economy. Attention is given to the time value of money by showing the concepts and techniques for evaluating the worth of products, systems, structures, and services in relation to their cost. Economic and cost concepts: calculating economic equivalence, comparison of alternatives and replacement economy. Economic optimization							
	in design and operations. Cost estimation of products an systems.							
Lecture	2 hours / week Laboratory - Tutorial 2 hours / week.							

BAS214	Heritage of Egyptian Literature	(4 Contact)
	مريف الطالب بالتميز الإقليمي لمصر في العصور القديمة	يهدف المقرر إلى ت
	أثر عبقرية المكان على الفكر والوعى المصري وتجلياته في	والوسطى والحديثة و
	نثرا من خلال الدرس التاريخي والنصي للأدب المصري في	التراث الأدبي شعرا و
Content	محتوى المقرر: مصر وتراثها الأدبي من منظور	مراحله المختلفة.
	المكتبة التراثية المصرية من منظور تاريخي متجدد - دراسة	حضاري وإبداعي -
	ر الوسطى في مصر والفرق بينها وبين العصور الوسطى في	مفهوم وضعية العصو
	فرافي المصري وأدب الرحلة في كتابات مصرية - التأليف	أوروبا - التراث الج

	الموسوعي في مصر والصياغة الأدبية في فن الموسوعات – الظواهر الأدبية الغالبة					
	على الأدب المصري - مناهج دراسة التراث الأدبي المصري ودلالاته - مدارس					
	التأليف والإبداع في تاريخ الفكر المصري - مجالات الإبداع في الشعر المصري					
	الطبيعة المصرية - أدب الحروب الموضوعات الجديدة والبيئة المصرية (- مدارس					
	الكتابة الفنية على المستوى الرسمي وغيرها - تتبع التطبيق على النص والتحليل من					
	خلال أبرز شعراء وكتاب التراثالمصري من أمثال ابن نباته المصري وابن سناء					
	الملك وصولا إلى أدوار الدكتور محمد كامل حسين والأستاذ أمين الخولى والدكتور					
	جمال حمدان في تناول التراث الأدبي المصري بالتحليل والدراسة المنهجية حول					
					عبقرية المكان.	
Lecture	2 hours / week	Laboratory	-	Tutorial	2 hours / week.	

CHE211	Chemical Engineering Principles I (4 Contact)				
Content	Basic concepts of material and energy balances - Combined material and energy balances - Balances on non-reactive and reactive processes - Application of material and energy balances on unit operations.				
Lecture	2 hours / week	Laboratory	-	Tutorial	2 hours / week.

CHE212	Material Science and Metallurgy (4 Contact)					
Content	Students in this course learn about tools of examination, temperature measurement, metallography, tests for mechanical properties, non-destructive testing, crystalline structure of metals, plastic deformation and working of metals, solidification, solidification theory of liquid metals, equilibrium phase diagrams of binary systems, the iron carbon phase diagram, phase transformations in steel, heat treatment of steel, classification of steels, and the effect of alloying elements, tool steels, cast irons, non-ferrous metals and alloys, metals at high and low temperatures, wear of metals and failure analysis.					

Lecture	2 hours / week	Laboratory	-	Tutorial	2 hours / week.
---------	----------------	------------	---	----------	-----------------

CHE213	Principles of Engineering Design (4 Contact)					
Content	Mechanical components, Motion and power transmission elements, Standard machine elements (threads, fasteners, locking devices, keys, splines, gears, pulleys, bearings, pipe connections, etc.), Welding and riveting conventions, Basics of Machine elements design, Stress analysis, Basic machining processes, Applications of robotics technology.					
Lecture	2 hours / Laboratory - Tutorial 2hours/week					

Level 2, Semester 2

BAS221	Numerical Methods in Engineering (4 Contact)					
Content	Numerical solution of linear and nonlinear systems - Numerical differentiation and integration - Curve fitting and interpolation - Numerical solution of initial value problems - Boundary and eigen value problems.					
Lecture	2 hours / week	Laboratory	-	Tutorial	2hours /week.	

CHE221	Chemical Engineering Principles 2	(5 Contact)
--------	--	-------------

	Simultaneous material and energy balances of complete proces						
	flow sheets-	 Introduction o 	f c	computer me	ethods	to solve	
	chemical en	ngineering proble	ms-	- Equation-b	ased a	pproach.	
Content	Degrees of freedom analysis – Conceptual design of chemical						
	processes - Introduction to basic Chemical Engineeri					gineering	
	processes (e.	.g.humidification,	bin	ary distillation	on, extra	action) –	
	Computer-aided process design.						
Lecture	3 hours /	Laboratory		Tutorio	2hou	rs /week.	
Lecture	week	Laboratory	_	1 utoriai	∠llou	is/week.	

CHE222	Chemical Engineering Thermodynamics (4 Contact)							
	Thermodynamic properties of homogeneous mixtures - partial							
	molal properties - Fugacity. Ideal and non-ideal solutions - Heat							
Content	effects of mixing. Excess properties - Phase equilibria; miscible							
	systems; activity coefficient - Gibbs-Duhem Equations -							
	Chemical reactions equilibria.							
Lastuma	2 hours /	Laboratory	2hours /	Tutorial				
Lecture	week	Laboratory	week.	1 utoriai	-			

CHE223	Analytical	Chemistry	(4 Contact)				
	Basic tools in analytical chemistry – Titrimetric me						
	analysis (A	cid - Base reaction	s, complex	 metric titrations, 			
	Redox rea	actions) - Gravin	netric meth	ods of analysis			
Content	nt (precipitation gravimetry volatilization gravimetry)						
	instrumenta	mental chemical analysis. Analytical Chem					
	Laboratory	y: Selected experiments for volumetric analysis,					
	Gravimetric analysis and instrumental chemical analysis.						
T	2 hours /	Laboratory 2hours / Tutorial					
Lecture	week	Laboratory	week.	Tutorial -			

	Automatic control merits and basic features — Classification of control action (open-loop and closed-loop, feed-back and feed-forward, process and position control) — Mathematical tools (Linearization, Laplace transforms and block diagram algebra), Process dynamics (first, second and higher orders) — Measuring					
Content	and actuating elements – Two-position controller – Three-term controller – Controller mechanism and optimum setting – System stability (algebraic and graphical methods).					
	Laboratory experiments demonstrating the principles covered.					
	These include temperature, pressure, flow and concentration measuring devices, and process control simulation for typical					
	chemical plants.					
Lecture	2 hours / week Laboratory 2hours / week. Tutorial -					

CHE225		Heat Transfer (4 Contact)								
	The Hear	t Transfer course	e requires	that students	apply their					
	engineeri engineeri mechanic formulate	ge of mathemating systems. In the systems of the systems of the systems of the system	his course oped in th . Students nal problen	an expansion nermodynamic are required ns using a co	of students and fluid to identify, mbination of					
Content	mass and energy balances and energy rate equations. The course combines analytical techniques and design principles as applied to thermal systems. The students will have a full understanding of conduction, convection, radiation, condensation and boiling heat transfer and will be able to design a heat exchanger system. Laboratory experiments on conduction, convection, radiation, drop-wise and film condensation, nucleate and film boiling and heat exchangers.									
Lecture	2 hours / week	Laboratory	2hours / week.	Tutorial	-					

CHE226	Training 1 (0 Contact)
Content	Students should spend 4 weeks in field training, after completing the Second level, in any Engineering Institution or Engineering Firms. Students should demonstrate the professional and practical skills they acquired during discussion with their assigned tutors.
Industrial field	30 hours / week

Level 3, Semester 1

BAS311	Environmental Management Contact) (3							
Content	The importance of studying environmental science technology and its effect on the environment – quenvironment and development elements – seen environmental pollution and method of control (air water pollution – solid wastes pollution – noise) – edenvironmental pollution control – legislations environment protection.	ality of the sources of pollution – conomics of						
Lecture	3 hours / week Laboratory - Tutorial	-						

CHE311	Reactor Design (5 Contact)				
	Fundamentals of thermodynamics and kinetics of chemical				
	reactions - Analysis of batch, plug-flow and continuous stirred				
Content	tank reactors for different types of reactions - Non ideal reactor				
Content	analysis, including residence time distribution, back mixing and				
	dispersion models - Kinetics of isothermal and non-isothermal				
	ideal reactors.				

	Kinetics of heterogeneous or catalytic reactions - Design of							
	different types of catalytic and non-catalytic reactors - Mass and							
	energy transfer limitations in heterogeneous reaction systems -							
	Catalyst effectiveness - Reactor stability and sensitivity to							
	operating parameters - Optimization of reactor design - Factors							
	affecting choice of reactors.							
Lecture	3 hours / week	Laboratory	-	Tutorial	2hours / week.			

CHE312		Oper	atio	ns Resear	ch	(4 Contact)
Content	engineering simplex me assignment integer progr problems. Q	I methods of cand management thod, duality, sertand transshipment ramming Probabiliqueuing theory; Maccision process, u	pro sitiv mo stic	blems. Linguity analyst odels; networdels in over chains;	near sis; ork ope de	r programming, transportation, t flows models; trations research
Lecture	2 hours / week	Laboratory	1	Tutor	ial	2hours / week.

CHE313	Mass Transfer Operations I	(4 Contact)
Content	Introduction to mass transfer and diffusion- be (velocity-concentration- flux)- molecular diffusion in liquids molecular diffusion in solutions- molecular diffusion in solutions- molecular diffusion in solutions- molecular diffusion in solutions- molecular diffusion in solutions transfer- types of mass transfer coefficients groups in mass transfer- theories of mass transfer heat, and mass transfer- analogies- equilibrium phases- interphase mass transfer- overall coefficients. Vapor-liquid equilibria (VLE), distillation (plate and packed columns) liquid-l	asic definitions asion in gasesion in gels and dids convective s-dimensionless fer- momentum, an between two mass transfer binary system

Lecture	2 hours / week	Laboratory	-	Tutorial	2hours / week.
---------	----------------	------------	---	----------	----------------

CHE314		Bio Chemistry (4 Contact)							
Content		Carbohydrates – amino acids – proteins –fatty acids – pharmaceutical compounds							
Lecture	2 hours / week	Laboratory	-	Tutorial	2 hours / week.				

CHE315	Electrochemistry (4 Contact)
CILSIS	Chemistry and electricity [Electro neutrality - Potential differences at interfaces]- Electrochemical cells [Transport of charge within the cell-Cell description conventions -Electrodes and electrode reactions] - Standard half-cell potentials [Reference electrodes- Prediction of cell potentials-Cell potentials and the electromotive series - Cell potentials and free
Content	energy - The fall of the electron] - The Nernst equation - Concentration cells- Analytical applications of the Nernst equation -Determination of solubility products- Potentiometric titrations - Measurement of pH -Membrane potentials]- Batteries and fuel cells [The fuel cell] - Electrochemical Corrosion [Control of corrosion]- Electrolytic cells [Electrolysis involving water - Faraday's laws of electrolysis-]
Lecture	2 hours / week Laboratory - Tutorial 2 hours / week.

CHE316A	Liquefied Natural Gas (4 Contact)								
	Refrigeration systems - Natural gas preparation and								
Content	liquefaction, thermodynamic aspects of liquefaction,								
Content	liquefaction plants - Properties of LNG - Vaporization losses								
	and custody transfer.								

Lecture	2 hours /	Laboratory		Tutorial	2	hours /
Lecture	week	Laboratory	_	Tutoriai		week.

CHE316B	Gas Sweetening (4 Contact)							
Content		Basic process principles, amine processes, carbonate processes, physical absorption methods, new amine-type processes, solid bed sweetening, liquid sweetening, sulfur production, and tail gas conditioning.						
Lecture	2 hours / week	Laboratory	-	Tutorial	2hours	/ week.		

CHE316C	Gas Engineering (4 Contact)
Content	Natural gas origins and accumulations- conventional and unconventional natural gas resources- natural gas composition- gas hydrates and their prevention- phase behavior of well fluids- natural gas properties- principal products- product specification and combustion characteristics- exploration, drilling, and well completion-natural gas production- natural gas processing (gas-liquid separation, natural gas dehydration, and natural gas sweetening)- natural gas liquefaction, transportation, and storage.
Lecture	2 hours / week Laboratory - Tutorial 2 hours / week.

CHE316D	Introduction to combustion Phenomena (4 Contac				
	Develops a foundation in combustion phenomena including				
	transport and other mechanisms in homogeneous and				
Contont	heterogeneous combustion. Environmental implications of				
Content	combustion. Elementary modeling and preliminary design				
	calculations in industrial and modern applications of				
	combustion, such as hazardous waste incineration, gas				

	turbines, catalytic converters, and coal combustion systems. Regulatory concerns, stoichiometry, thermochemistry,						
	incinerators	incinerators and air pollution control.					
Lecture	2 hours /	Laboratory	_	Tutorial	2hours /		
2000010	week	20001001		Tutoriur	week.		
~~~~							
CHE316E			A	Air Pollution	(4 Contact)		
	Sources, me	easurements and e	qui	pment design	for removal of		
	air pollutar	nts - Effects of	air	pollutants -	Dispersion of		
Content	pollutants in	n the atmosphere -	Par	ticulate matter	r and its control		
	equipment - Atmospheric photochemical reactions						
	Instrumentation and emission testing equipment.						
T4	2 hours /	T - b 4		T4	2hours /		
Lecture	week	Laboratory	-	Tutorial	week.		

CHE316F	Engineering Material Selection (4 Contact)						
	Application of engineering of materials science principles in						
	the selection and/or specification of metals, ceramic						
Content	plastic mate	plastic materials for use in structural, mechanical, and chemical					
	usage. Me	chanical properti	es,	corrosion,	oxidation, and		
	variation of properties with temperature are considered.						
Locture	2 hours /	Laboratory		Tutorial	2 hours /		
Lecture	week	Laboratory	-	1 utoriai	week.		

#### Level 3, Semester 2

BAS321	Project Management and Control (4 Contact)
	Development, negotiation and specification of project contract.
	Project planning and control using activity network models;
Content	network logic; scheduling; resource allocation; time-cost trade
	off methods; multi-project resource allocation and leveling using
	available industrial software.





Lecture 2 hours / week Laboratory - Tutorial 2h
-------------------------------------------------

<b>CHE321</b>	Mass Transfer Operations II (4 Contact)							
	s — Inter-phase	e mass trans	sport					
	- Continuo	- Continuous two phase mass transport processes. Gas						
Content	absorption and stripping- adsorption, crystallization- double							
	effect evapo	oration, humidifica	tion	n and water c	ooling-dryi	ng -		
	membranes types and applications.							
Lecture	2 hours /	Laboratory		Tutorial	2hours / w	zoolz		
Lecture	week	Laboratory	_	Tutoriai	Zilouis / W	CCK.		

CHE322		Corrosion Engineering (3 Contact)						
	Electrolytes and electrolytic transport processes - Electrolytic							
	conductance	- Ostwald dilution	on	law - Oxidat	tion States and			
	Oxidation -	Reduction React	tion	s - Balancin	ng Oxidation -			
	Reduction Ed	quations - Voltaic	Cel	ls - Cell EMF	under standard			
	Conditions -	- Free Energy a	nd	Redox Reac	tions - Nernst			
	Equation and	l its applications in	ı sp	ontaneity pred	diction and Cell			
Contont	EMF	under	non	standard	conditions			
Content	- Concentrati	on cells - Batteries	ano	d Fuel Cells - 1	Electrolysis and			
	nonspontane	ous redox reactio	ns.	Electrochemi	cal Aspects of			
	Corrosion: E	lectrochemical rea	acti	ons; Polarizat	ion; Passivity -			
	Applications	of Thermodynar	nics	s to Corrosio	on – Corrosion			
	Prevention:	Material selectio	n.	Alteration of	f environment.			
	Inhibitors. D	esign. Cathodic a	nd	anodic protec	ction. Coatings.			
	Corrosion control through water conditioning.							
Lastura	1hours /	Laboratory		Tutorial	2 hours /			
Lecture	week	Laboratory		Tutorial	week.			





<b>CHE323</b>		Mechanical unit operation (4 Contact)						
Content	them in the and strippin cooling, soli screening, s	is a study of necest design of differentials, distillation, so id drying, crystall edimentation, contomponent systemolids.	t ch olv izat	nemical processent extraction ion exchatation method	ses: absorption ns, evaporative ange, filtration, s in multistage			
Lecture	2 hours / week	Laboratory	-	Tutorial	2 hours / week.			

CHE324		<b>Process Modeling and Simulation</b> (4 Contact)						
	Review of the basic principles of transport of momentum, heat,							
Content	and mass with applied problems. Numerical methods for solving							
	more complex problems of transport phenomena and kinetics.							
Lacture	2 hours /	Laboratory	2 hours / Traterial					
Lecture	week	Laboratory	week.	Tutorial				

CHE325A	Foams Industry (4 Contact)				
Content	Chemical composition and raw materials – low and high- density foams – testing of foams – additives improving properties.				
Lecture	2 hours / week	Laboratory	-	Tutorial	2hours / week.

CHE325B	Ceramics Industry	(4 Contact)		
	General ceramics fabrication processes – prep	paration of raw		
Content	<b>Content</b>   material – cold forming processes – ceramic building mater			
	bricks, tiles, sewer pipes – sanitary ware.			





Lecture	2 hours /	Laboratory	_	Tutorial	2hours	/
Lecture	week	Laboratory		1 4101141		week.

CHE325C		Polyn	ner En	gineering	(4	Contact)	
	Structure a	nd physical pro	pertie	s of poly	mers,	polymer	
	solutions, a	solutions, analysis and testing of polymers, measurement of					
Contont	molecular	weight - Types	of j	polymeriza	tion	reactions;	
Content	manufacture	manufacture of polymers; process type of reactors - Polymer					
	processing; plastics, elastomers; properties of commercial						
	polymers; th	nermoplastics and	therm	osetting res	sins.		
Lastura	2 hours /	Tutorial	2	hours /			
Lecture	week	Laboratory		1 utoriai		week.	

CHE325D		Food Process	ing	Technology	(4 Contact)		
Content	of heat-an removal of l	Basic principles on food processing-processing by application of heat-ambient temperature processing-processing by removal of heat-Heat processing by direct and radiated energy-post-processing operations.					
Lecture	2 hours / week	Laboratory	-	Tutorial	2hours / week.		

CHE326	Training 2	(0 Contact)
Content	completing the Third level or Engineering Firms. The report implying a full desertion joined for training. Studies	weeks in field training, after in any Engineering Institution ey should prepare a technical cription of the processes they lents should demonstrate the lents skills they acquired during their assigned tutors.
Industrial field		30 hours / week





# Level 4, Semester 1

<b>CHE411</b>	Computer Applications in Chem. Eng. (4 Contact)
Content	This is the study of contemporary computer tools toward chemical engineering. Students design, develop and deploy computer applications or as applications which can be implemented via the internet. These applications are developed for inventory and production control systems, statistical application, database/data mining applications and for software system integration. Software tools and packages utilized include XML, JavaScript, Java, MATLAB, MSVBA, and MS Access.
Lecture	2 hours / week Laboratory 2 hours / week. Tutorial -

<b>CHE412</b>		Petrochemical Engineering (4 Contact)							
Content	distillation, hydrogenation economics	chemistry; occurred catalytic and on, isomerization, of the productionals as well as some	the poly on	rmal ymeriz of b	crackinzation	ng, alkylation, Techniques and			
Lecture	2 hours / week	Laboratory	-	T	utorial	2 hours / week.			

<b>CHE413</b>	I	Plant Design	(4 Contact)
Content	The anatomy of a chemical re-	nanufacturing	process- The
Content	Organization of A Chemical En	ngineering Pro	oject- Practical





	Consideration	ons in Design-	The	Design A	Appro	ach- Typ	es of
	Designs- So	cale-up in Design	gn- S	Safety Fa	ctors	- Specific	cation
	Sheets- Construction of a detailed flow sheet using a process						
	simulator (currently HYSIS) - Material and energy balances -						
	Conservation	n of	mat	terial	and	d e	nergy
	flows. Detai	led design of eq	uipm	ent: size,	const	truction d	etails,
	materials of construction, instrumentation and control. General						
	design con	siderations; plan	nt lo	ocation- 1	plant	layout-	plant
	operation a	nd control- hea	lth a	nd safety	/ haz	ards- fire	e and
	explosion ha	azards- personne	1 saf	ety- loss j	preve	ntion- HA	AZOP
	study- proce	ess economics- o	otimu	ım design	and o	design stra	ategy-
	materials	transfer,		han	ıdling	5	and
	treatment						
Lecture	2 hours /	Laborator	.,	Tuto	rial	2 hours /	week
Decture	week	Laborator		Tuto	ııaı	2 110u13 /	WCCK.

CHE414		Project 1 (4 Contact)								
	Students will be assigned Chemical industrial projects in wl									
	they will b	e expected	to apply	Principles	of Chemical					
Content	Engineering analysis and design to solve a given real world									
	problem. Reports and presentations will be emphasized in									
	addition to the technical content.									
Lastuna	2 hours /	Labamatamy	2 hours /	T						
Lecture	week	Laboratory	week.	Tutorial	-					

CHE415A	Electroplating (4 Contact)
	Electrochemistry – Electrochemical cells – Surface
Content	preparation – throwing power – Electrochemical baths –
Content	Factors affecting electroplating – temperature – bath
	concentration.





Lecture	2 hours /	Laboratory		Tutorial	2hours	/
	week	Laboratory	_	Tutoriai		week.

CHE415B	Synthetic Fiber	(4 Contact)		
Content	Classification of	f synthetic fiber	rs – Properties	of fibers, Nylon
Content	6 – Nylo	n 6,6 – Amide	fibers – Glass	fibers-Teflon.
Lecture	2 hours / week	Laboratory	- Tutorial	2hours / week.

CHE415C	Paints technology (4 Contact)				
	Paints comp	ositions – Classif	fica	tion of paints	– primers and
Content	final coats -	- surface preparat	ion	- reaction of	paint systems.
	Paints for co	orrosion resistance	<del>)</del> .		
Lecture	2 hours /	Laboratory		Tutorial	2hours /
Lecture	week	Laboratory	-	1 utoriai	week.

CHE 415D	Renewable Energy Sources (4 Contact)				
Content	Fossil fuel vs. renewable energy sources- solar energy and its applications- wind power- hydropower- geothermal energy-municipal solid waste and biomass- ocean energy.				
Lecture	2 hours / week	Laboratory	ı	Tutorial	2hours / week.

CHE416A	Water Desalination (4 Contact)			
	The course covers the basic concept of water desalination and			
	combines water chemistry, scaling, corrosion, heat transfer			
	principles, material behavior, and design principles as			
<b>Content</b> applied to desalination processes. Attention is given				
	thermal (flash, vapor compression) and non-thermal			
	(reverse-osmosis, electro -dialysis) desalination techniques.			
	Water properties and quality criteria and standards as well as			





	corrosion behavior and its control in desalination plants will					
	be discussed.					
Lecture	2 hours /	Laboratory		Tutorial	2	hours /
Lecture	week	Laboratory	_	1 utoriai		week.

CHE416B	Wastewater treatment (4 Contact)					
Content	Water chemistry – water sampling - Water analysis- water treatment processes (Physical processes: screening, mixing sedimentation, membrane separation - Chemical processes coagulation, chemical precipitation, disinfection, in					
	exchange) - E	Biological process	(aerobic an	ıd ar	naerobic)	
Lecture	2 hours / week	Laboratory	- Tuto	rial	2hours / week.	

CHE416C	Rubber Industry				(4 Contact)
Content	Natural rubber – isoprene – rubbers – elastomers – chemical				
Content	vulcanization	ulcanization reaction – ABS.			
Lecture	2 hours /	Laboratory		Tutorial	2hours / week.
Lecture	week	Laboratory	_	- Tutorial	Zilouis/ week.

# Level 4, Semester 2

<b>BAS421</b>	Research and Analytic Skills	(4 Contact)
Content	التحليل للمسائل الهندسية مع الأخذ في الاعتبار النواحي الفنية، الأخلاقية. أطوار حل المسائل )فهم المسألة وصياغتها، خطة التقييم، والمراجعة (. دور الإبداع في التحليل .تحليل) أوجه الضعف، الفرص، والمخاطر )بالنسبة للبدائل المختلفة فافة - الفائدة، وكذلك تحليل المخاطر. دور التعاون وعملا لفريق يرة. أهمية العثور على البيانات والمعلومات والمعارف المناسبة.	الاقتصادية البيئية، و الحل، تنفيذ الخطة، SWOT أوجه القوة، التحليل التفصيلي للتك





Lecture	2 hours / week	Laboratory	-	Tutorial	2hours / week.
	المضيف، URL وكذلك الروابط. تقييم نتائج البحث اختيار محرك البحث المناسب. أهمية تقييم مصداقية الأماكن المتاحة على الشبكة المعرفية العالمية				
	NOT 'OR' (AND)، AND كيفية البحث باستخدام العبارات، العناوين، المجال، الحاسب				
	صياغة الاستفساراتالموجهة لمحركات البحث باستخدام الروابط المنطقية )مثل				
	بةWeb) ( وكيفية	الشبكة المعرفية العالمي	في	الأساسية للبحث	مهار اتالبحث: الطرق

<b>CHE421</b>	Industrial Technology in Chem. Eng. (4 Contact)						
	Introduction	in the che	emical ind	ustries and	definitions –		
	Combined processes in the chemical creation – nitratation –						
	merization –						
Content	t concentration on the organic industrial processes including the						
	combined pro	combined processes with operation charts until the final products					
	- study of different physical and industrials knitting – natural						
	knitting – cottons – wool etc						
T4	2 hours / T	h4	2 hours /	T-40-1			
Lecture	week La	boratory	week.	Tutorial	-		

CHE422		Petroleum Refini	ng	Engineering	(4 Contact)	
	Refinery org	ganization - Refin	ery	feed stocks	and products -	
	Crude distill	ation - Cracking a	nd	reforming – I	Hydro treating -	
Contont	Alkylation. Lubricating oils production - Petroleum gases – Hydro processing; product blending, environmental constraints					
Content						
		on refinery products - Term project using actual refinery data to				
	be utilized for typical design calculation on the above o					
Lecture	2 hours /	Laboratory		Tutorial	2hours / week.	
Lecture	week	Laboratory	_	1 utoriai	Zilouis/ week.	

<b>CHE423</b>	Quality	Assurance	and	Engineering	(4 Contact)
CIIL-423				Reliability	(4 Contact)





Content	es an	tablishing d attribu aracteristic	produc ites cl cs curve	control t specifica narts; acces; process llel and s	tion cepta capa	s; proce ance s abilities	ess cor samplir	ntrol; varia ng; opera oftware	ables
	fie	Reliability of parallel and serial engineering systems. Life testing. Impact of reliability on the design process in engineering fields such as mechanical, electrical and structural engineering. Studies the effect of equipment reliability on product quality.							
Lecture	2	hours / week	La	aboratory	-	Tu	itorial	2hours w	/eek.
CHE4	2/1					Dr	oject 2	(4 Con	tact)
CIIE4	<b>4</b> 4	Continua	tion an	d conclusi	on (		U	`	
Conte	ent	Continuation and conclusion of the investigations on the chemical industrial problems of Project I; written reports and team presentations are required.							
Lectu	re	1 hours	/ La	boratory	4ho	ours	/ k	Tutorial	-

CHE425A		Industrial Safety (4 Contact)					
Content	Introduction, preventing emergencies in the process industry, Human error, Identification and assessment of hazards, Fires and explosions, Hazard of plant modification, case studies, miscellaneous topics to be covered by invited lecturers.						
Lecture	2 hours / week	Laboratory	-	Tutorial	2hours / week.		

CHE425B	Selected T	(4 Contact)				
Content	Special topics to be selected by the department to address new subjects in Chemical Engineering.					
Lecture	2 hours / week	Laboratory	ı	Tutorial	2hours / week.	





CHE425C			P	lasticizers	(4 Co	ntact)
Content	plasticizers- requirement plasticizer	of plasticization- factors opposes measurement efficiency as a fun of natural poly	ing of inctio	plasticizatio plasticize n of plastio	on- plas rs prop cizer stru	ticizer erties- icture-
	stabilizers, extenders, lubricants, fillers, and pigments).					
Lecture	2 hours / week	Laboratory	-	Tutorial	2hours	/ week.

CHE 425D	Fertilizers Technology	(4 Contact)				
	History of chemical fertilizers- Importance and	uses of				
	fertilizers- Potassium fertilizers; production ar	nd uses-				
Comtond	phosphorus fertilizers; production and uses Sulfur fertilizers-					
Content	Calcium and Magnesium fertilizers- Nitrogen for	ertilizers;				
	production and uses- slow release and controlled	d release				
	fertilizers- Liquid fertilizers- Bio fertilizers- Nano fe	ertilizers.				
Lecture	2 hours / week   Laboratory   Tutorial	2hours /				
Lecture	2 hours / week   Laboratory   -   Tutorial	week.				

CHE426A	Pulp and Paper Industry (4 Contact)							
	Raw mater	ials and	their	chem	ical structure	s- mech	anical,	
	chemical,	and ch	emi-me	chani	cal pulping-	screening	gand	
Content	ent washing of pulp- bleaching of pulp and lignin remova						black	
	liquor and	liquor and energy recovery— evaporation processes — drying						
machine- finishing treatment- environme					vironmental p	roblems.		
Lecture	2 hours /	Lal	a matam		Tutorial	2hours	/	
Lecture	week	Lat	oratory	y   -	1 utoriai		week.	

CHE426B	Polymer Processing	(4 Contact)
---------	--------------------	-------------





	Theory and	practice of polyr	ner proc	essing. N	lon-N	ewtonian
	flow, extrus	sion, injection m	olding,	fiber, fili	n, an	d rubber
Content	processing.	Kinetics of and	structui	ral develo	opmer	nt during
Content	solidification. Physical characterization of microstructure and					cture and
	macroscopio	properties. Co	omponei	nt manu	factur	ing and
	recycling issues, compounding and blending.					
Lecture	2 hours /	Laboratory	7	Futorial	2 1	nours /
Lecture	week	Laboratory	- ]	i utoriai		week.

CHE426C			]	Refractories	(4 Contact)
	Glazes – dr	ying – firing – h	ot f	forming and 1	melt forming –
Content	stoneware - porcelain, gypsum - enameling abrasives -				
	Cement – Properties of refractories. Equilibrium diagrams.				
Lecture 2 hours / Leberatory Tute				Tutorial	2hours /
Lecture	week	Laboratory	-	1 utoriai	week.

CHE426D		Printing Technology (4 Contact)					
	Chemistry of	of Printing inks -	- m	anufacture of	printing inks-		
Content	printing methods printing on different materials such as textile,						
Content	paper, plast	paper, plastics Etc. Factors affecting printing quality-					
	Quality control in printing.						
Lecture	2 hours /	Laboratory		Tutorial	2hours /		
Lecture	week	veek Laboratory - Tutoria	Tutoriai	week.			